摘要: |
准确识别周围车辆的换道意图将有助于自动驾驶系统决策,从而提升安全性和舒适性。提出一种基于长短期记忆(Long Short-term Memory,LSTM)网络的换道意图识别方法,能够较为准确地识别周围车辆的换道意图。该方法先通过构造收益函数来描述目标车辆(被预测的车辆)与其邻域车辆之间的交互关系,得到目标车辆左换道、右换道和车道保持的收益值,并将该收益值作为交互特征输入到意图识别网络;在意图识别网络中,引入注意力机制,通过网络自学习得到的权重对LSTM层各个时刻的输出加权求和,能够对编码信息进行有效利用,提高换道意图的识别性能;由于车辆的换道意图存在较强的前后依赖性,引入条件随机场(Conditional Random Field,CRF),采用意图转移特征函数对各个时刻换道意图进行联合建模,并构建负对数似然损失函数作为整个网络的损失。为了验证所提方法的有效性,基于NGSIM数据集训练并评估模型。结果表明:所提方法对换道意图识别的准确率、宏观F1分数、测试集损失分别为0.9164、0.8746和0.1683,均优于支持向量机(SVM)、隐马尔可夫模型(HMM)和LSTM模型。同时,所提模型对左换道和右换道的平均换道提前识别时间分别为3.08、2.33s,综合换道提前识别时间为2.81s,优于基线模型,能够为主车的决策提供充足的冗余时间。通过消融分析可知,引入的交互作用模块、注意力机制和条件随机场对准确率的贡献分别为0.0122、0.0043和0.0110,印证了相关模块的有效性。最后由场景验证的案例可以得出,所提方法在准确率、稳定性和换道提前识别时间等指标上优于对比模型。 |