题名: | 基于生成对抗网络的船舶航迹预测模型 |
正文语种: | 中文 |
作者: | 王森杰;何正伟 |
作者单位: | 武汉理工大学 |
关键词: | 轨迹预测;生成对抗网络;船舶会遇;注意力机制;深度学习 |
摘要: | 为提高复杂交通局面下的船舶航迹预测精度,提出一种基于生成对抗网络的船舶航行轨迹预测模型(Generative Adversarial Networkswith Attentionand Interaction,CAN-AI)对多艘船舶轨迹同时进行预测。通过编码器对船舶轨迹时空序列进行编码,设计交互模块对多艘会遇船舶的相对位置和相对速度等信息进行抓取和分析,设计注意力模块将船舶自身运动信息和群体交互信息融合后输入解码器对轨迹进行预测。利用舟山港历史轨迹数据进行验证,试验结果表明:GAN-AI模型相较于Seq2seq、朴素GAN和Kalman预测模型分别提升了20%、24%和?2%的预测精度,对提高船舶交通服务(Vessel Traffic Service,VTS)系统安全管理水平、判断船舶交通风险程度具有重要意义。 |
期刊名称: | 中国航海 |
出版日期: | 202106 |
出版年: | 2021 |
页码: | 72-77 |