摘要: |
为揭示交通事件对高速公路运行状态持续时间的影响规律,研究了高速公路交通事件持续时长预测方法。考虑高速公路交通事件时间序列特性,基于循环神经网络理论,从时间序列数据中提取交通事件时间依赖关系;通过引入长短时记忆网络,结合特征、时序注意力层挖掘历史时刻信息和当前时刻数据间的相关性,构建基于注意力机制-长短时记忆网络的高速公路交通事件持续时长预测模型。以2018年西安绕城高速公路交通监测数据集为例,开展了高速公路交通事件持续时长预测模型验证,对比了所提模型与反向传播神经网络、随机森林、支持向量机、长短时记忆网络模型这4种典型算法的预测精度,并分析了事件类型、天气条件、车辆类型、交通量等不同影响因素对持续时长的影响程度。结果表明:使用同一数据集,注意力机制-长短时记忆网络预测模型的预测结果平均绝对误差为24.43,平均绝对百分比误差为25.24%,均方根误差为21.17,预测精度优于其他4种预测方法。在模型的各影响因素权重中,事件类型所占权重最大为0.375,其次分别为车道数、车辆类型、天气等;采用立交出入口小时交通量作为修正参数,可以进一步提升预测精度,预测结果的绝对误差、平均绝对百分比误差和均方根误差可分别降低21.3%、7.5%和16.9%。研究结果能进一步提高高速公路交通事件持续时长预测的精度,为公路安全高效运行提供技术支持。 |