摘要: |
A controller-in-the-loop simulation was conducted in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center to investigate the functional allocation aspects associated with ground-based automated separation assurance in a far-term NextGen environment. In this concept, ground-based automation handled the detection and resolution of strategic and tactical conflicts and alerted the controller to deferred situations. The controller was responsible for monitoring the automation and managing situations by exception. This was done in conditions both with and without arrival time constraints across two levels of traffic density. Results showed that although workload increased with an increase in traffic density, it was still manageable in most situations. The number of conflicts increased similarly with a related increase in the issuance of resolution clearances. Although over 99% of conflicts were resolved, operational errors did occur but were tied to local sector complexities. Feedback from the participants revealed that they thought they maintained reasonable situation awareness in this environment, felt that operations were highly acceptable at the lower traffic density level but were less so as it increased, and felt overall that the concept as it was introduced here was a positive step forward to accommodating the more complex environment envisioned as part of NextGen. |