摘要: |
基于车联网技术的发展,未来智能网联车的普及和应用会极大改变驾驶人的跟驰操作行为和交通流宏观特性。为研究网联自动驾驶车辆的跟驰行为以及智能跟驰决策如何合理确定前后跟驰车辆数,通过引入前后多车车头间距、多前车速度差、加速度差等信息,建立前后不对称多车信息的网联车辆跟驰模型。利用线性稳定性分析得出交通流的临界稳定条件,最后利用Matlab对模型的制动、起步和交通流演化特性进行数值仿真,定量对比分析前后多车数量对车辆速度、加速度、位置的影响。仿真结果表明:AMFR-CAV模型较MFRHVAD模型制动过程加速度平均峰谷差值减少43.32%,震荡时间提前16%,速度峰谷差值降低42.43%;起步过程平均加速度波峰值降低28.54%,波峰出现时间平均提前6.76%,速度延迟时间平均减少30.27%,第500 s第10辆跟驰车辆位置提高1.29 m;周期性边界运行条件下,减速过程交通流稳定性优于加速过程,减速过程中,当跟驰车辆引入P=2,Q= 8时交通流稳定性最好,加速过程中,当跟驰车辆引入P=3,Q= 7时交通流稳定性最好;当车辆信息给定时,前车数量考虑越多,交通流稳定性不一定越好,且最优跟驰状态下前后车数量具有不对称性。 |