原文传递 Non-Invasive Imaging and Assessment of Pavements.
题名: Non-Invasive Imaging and Assessment of Pavements.
作者: Anderson, N.; Elkrry, A. M.
关键词: Asphalt Pavements; Concrete Pavements; Deterioration; Electrodes; Imaging Techniques; Maintenance; Moisture Content; Pavements; Portland Cement; Sampling; Tomography; Video Imaging
摘要: Currently, there are over 3.96 million public centerline road miles in the U.S. and of this, 2.50 million miles (or about 63 percent) are paved (FHWA, 2002). Pavement deterioration is a significant problem that must be addressed to preserve highway infrastructure investments in highways in United State and around the world. Accurately evaluating condition of pavement and sub-pavement soil/rock over time and using this information to choose appropriate maintenance techniques is critical in terms of the responsible maintenance of roadways. In order to demonstrate the utility and cost-effectiveness of using geophysical tools to assess roadway and sub-roadway conditions, I propose to acquire geophysical control along total of eight segments of roadway in central Missouri (Figure 1) to assess the condition of pavement, base and native soil all the way down to the top of bedrock. Each segment of road way will be approximately 1000 ft. long. Geophysical data will be acquired at these different locations using; Electrical Resistivity Tomography, Multi-Channel Analysis of Surface Wave, Ground Penetrating Radar using both 1.5 GHz and 400 MHz, Portable Seismic Property Analyzer and Ohm Mapper methods. Core control (surface to native soil) and falling weight deflect meter control will be acquired along the test segments in order to constrain the interpretation of the acquired geophysical data. Data will be collected under different weather conditions (wet, dry, warm and cold) to assess the impact of these climatic conditions on the data quality and interpretability. The test sites will be selected so, data will be acquired in different geological environments and with very different pavement condition (including asphalt over concrete, asphalt reinforces concrete, thick asphalt, thin asphalt, good asphalt and poor asphalt). The reason of using these geophysical techniques is because the utility and cost-effectiveness of these techniques has not been demonstrated yet because they
报告类型: 科技报告
检索历史
应用推荐