论文题名: | 基于动态故障树的钻井泵故障诊断专家系统的设计与实现 |
关键词: | 钻井泵;故障诊断;动态故障树;离散贝叶斯网络;专家系统 |
摘要: | 本文受四川省重大科技专项项目“智能钻机研制及应用”(立项编号2019ZDZX0030)资助。钻井泵作为钻机的“心脏”,因工作环境复杂、条件恶劣,容易产生故障,影响钻机正常运作。为了保证生产的效率,要求在发生故障的初期能够快速准确地定位故障并解决。目前,故障树分析法作为诊断复杂机械故障的通用方法,其无法表示钻井泵某些部件只有按固定顺序失效才能导致系统故障的情况,导致诊断结果不准确。为了解决此问题,选择动态故障树分析法表示此类动态故障并诊断。同时建立专家系统,可以让工作人员在专家不在场时仍可以快速确定故障并获得专业的维修知识。主要研究内容分为以下几部分: 首先,本文选择工作环境恶劣,故障情况复杂难以诊断的钻井泵作为研究对象。通过专家的指导与所提供的相关知识,分析其故障机理。以钻井泵的动力端作为实例,建立故障树,并验证了故障树分析法在故障诊断中的有效性。 接着,针对故障树无法表征出钻井泵故障中各部件按顺序失效造成系统故障的情况,在故障树中引入动态逻辑门,构成动态故障树。结合钻井泵故障特点选择计算复杂度低且准确率较高的基于离散贝叶斯网络的动态故障树诊断模型,并对其诊断模型进行改进,通过加入“率参数?--划分数n”对应关系,提高诊断可靠性与准确率。以钻井泵液力端作为实例验证了动态故障树在故障诊断中的有效性。 然后,将传统故障树诊断模型与改进的离散时间贝叶斯网络的动态故障树诊断模型结合成为混合故障树诊断模型,作为故障诊断专家系统的故障推理机;设计知识库,根据钻井泵基本故障信息与诊断模型知识的特点,设计恰当的表示方式。 最后,按照设计思路建立MVC框架的Web应用,开发具有友好的操作界面、良好的操作体验和完善的功能指引的故障诊断专家系统,并通过一个实例,证明本系统在钻井泵故障诊断中的一定指导意义与实用价值。 |
作者: | 何旋 |
专业: | 电子与通信工程 |
导师: | 李波 |
授予学位: | 硕士 |
授予学位单位: | 电子科技大学 |
学位年度: | 2021 |