当前位置: 首页> 学位论文 >详情
原文传递 民航与铁路客运需求预测以及疫情的影响
论文题名: 民航与铁路客运需求预测以及疫情的影响
关键词: 铁路客运需求;新冠肺炎疫情;经验模态分解;支持向量机;分解集成预测
摘要: 在当今社会中,发达的运输业已经成为一个国家发展和进步的重要象征,是经济发展的基石。同时,工业的快速发展离不开交通运输业的推动,其为企业减少了时间和运输成本,促进了产品的社会流通,加速了消费的升级,在国家建设的各个方面有着难以估量的贡献。我国交通运输业发展迅速,其不仅加速了经济的发展,而且给人们的生活带来了很大的便利。为了能够对运输业的发展提供更多的信息,需要对客运量数据有准确的把握,客运量预测已经变成了交通运输部门工作中不可或缺的一部分。2020年初新冠肺炎病例在我国被发现,随后各个省份都受到了疫情的影响,我国经济发展和生产活动陷入的短暂的停顿。交通运输业受到疫情的影响导致客运量出现了严重的下降,这给客运量的预测带来了不小的困难,为了能使交通运输也在疫情后快速恢复,给相关部门提供制定政策的依据,也为民航和铁路建设提供科学和合理保障,有必要探究在疫情影响下如何精确地预测客运量的问题。
  本文以2010年1月至2020年9月的民航和铁路客运量为研究对象,首先探究了影响客运量生成的因素,选取了GDP、第三产业增加值、城镇居民人均可支配收入、节假日、城镇居民人均消费支出作为客运量的影响因素,为了能够描述出新冠肺炎疫情对客运量的影响,将新冠肺炎现有确诊病例作为影响因素添加至模型中,之后根据客运量非线性非平稳的数据特征,采用经验模态分解(EMD)将客运量数据分解成不同频率的序列,并借助均值重构法将序列重构为高频、低频、余项序列,对重构序列所代表的含义进行分析。在对序列进行预测时,利用排列熵(PE)判断数据的复杂程度,根据数据的复杂度选取合适的模型建模,复杂度低的余项序列采用简单的岭回归模型,而复杂度高的高频、低频序列采用粒子群优化的支持向量机模型建模,将每种序列的预测结果加总得到客运量的最终预测结果;通过模型对比表明本文使用的分解集成模型能有效的提高客运量预测的准确度。利用本文提出的模型对2020年最后三个月的客运量进行预测,预测误差较小,说明模型可以用于预测。本文还对客运淡、旺季和疫情对客运量预测的影响进行了分析,模型预测结果表明,考虑客运淡、旺季和疫情因素的预测模型的预测精度更高。
作者: 王景荣
专业: 应用统计
导师: 王京晶
授予学位: 硕士
授予学位单位: 江西财经大学
学位年度: 2021
检索历史
应用推荐