摘要: |
现有的可变限速(VSL)控制策略灵活性较差,响应速度较慢,对驾驶人遵从度和交通流状态预测模型的依赖性较高,且单纯依靠可变限速标志(VMS)向驾驶人发布限速值,难以在智能网联车辆(CAVs)与人工驾驶车辆(HDVs)混行的交通环境中实现较好的控制效果。对此,结合深度强化学习无需建立交通流预测模型,能自动适应复杂环境,以及CAVs可控性的优势,提出一种混合交通流环境下基于改进竞争双深度Q网络(IPD3QN)的VSL控制策略,即IPD3QN-VSL。首先,将优先经验回放机制引入深度强化学习的竞争双深度Q网络(D3QN)框架中,提升网络的收敛速度和参数更新效率;并提出一种新的自适应ε-贪婪算法克服深度强化学习过程中探索与利用难以平衡的问题,实现探索效率和稳定性的提高。其次,以最小化路段内车辆总出行时间(TTS)为控制目标,将实时交通数据和上个控制周期内的限速值作为IPD3QN算法的输入,构造奖励函数引导算法输出VSL控制区域内执行的动态限速值。该策略通过基础设施到车辆通信(12V)向CAVs发布限速信息,HDVs则根据VMS上公布的限速值以及周围CAVs的行为变化做出决策。最后,在不同条件下验证IPD3QN-VSL控制策略的有效性,并与无控制情况、反馈式VSL控制和D3QN-VSL控制进行控制效果上的优劣对比。结果表明:在30%渗透率下,所提策略即可发挥显著控制性能,在稳定和波动交通需求情境中均能有效提升瓶颈区域的通行效率,缩小交通拥堵时空范围,与次优的D3QN-VSL控制相比,两种情境中的TTS分别改善了14.46%和10.36%。 |