摘要: |
为加强危险货物道路运输安全风险源头管控,本文充分挖掘轨迹大数据和动态监控数据等多源异构行车数据,研究危险货物道路运输车辆(危货车)驾驶人风险倾向性分类。基于广泛可用的GPS轨迹数据所蕴含的驾驶行为模式和运行环境特性,引入时变随机波动率的概念,提取5种速度波动性指标,构建表征驾驶风格的属性特征集,加之行为抑制控制力、认知抑制控制力和生理负荷特征,共同组建危货车驾驶人风险倾向属性指标体系;利用Critic赋权法计算各指标客观权重,并基于多准则妥协解排序算法(VIse Kriterijumski Optimizacioni Racun,VIKOR)对危货车驾驶人的属性进行评分;建立基于K-medoids聚类算法的危货车驾驶人风险倾向性分类模型。结果表明:运用分类模型,本文将危货车驾驶人分为4类。其中,驾驶风格激进加行为抑制控制力薄弱型驾驶人面对拥堵路段和恶劣天气时表现出更大的速度波动和更多的车辆控制报警;认知抑制控制力薄弱型驾驶人分心次数更多,愿意将更多的注意力分配给分心对象,且更频繁地在分心对象和前方路况间进行注意力转移;易疲劳型驾驶人表现出更多的疲劳报警和超时驾驶报警,驾驶人承受更大的生理负荷。研究成果可以为危货车驾驶人主要风险倾向类型识别和风险评估提供理论依据。 |