摘要: |
随着21世纪大力发展海洋经济,航运事业呈现无限生机,由于船舶航行时气候和地理环境复杂,现在对船舶安全、经济的航行要求越来越高,如何科学地操纵和控制船舶,安全准时到达目的港口,是一个生命攸关、影响重大的问题。目前船舶操纵普遍使用自动舵控制液压舵机的方式,使船舶按照驾驶需要来随动或者定航向、定轨迹航行。在船舶试航时和交付使用后发现液压系统系统经常存在液压波动冲击,导致系统发生泄漏和液压平衡阀工作不稳定问题,影响整个系统的可靠性。
对自动舵的研究普遍注重自动控制系统的控制性能、本文从船舶的操纵控制原理出发,根据实际的需要,基于一阶线性模型和现代最优控制原理,分析研究舵机小角度转舵时的运动情况,考虑舵机液压系统的波动和可靠性,兼顾舵机响应转速设计自动舵(控制器),根据航向控制数学模型和实际操纵情况优选参变量λ值,设计PID控制器;进一步再考虑二阶线性模型并加入等效的环境干扰,通过采用Matlab仿真软件的Simulink工具,对控制系统进行模拟仿真研究,发现航向角和舵角响应曲线上锯齿状波动较大较多;利用李雅普诺夫稳定性的原理,结合最优控制结果,构造性地设计非线性控制器;从减少液压系统系统冲击出发,适当增加“死区”模块,减少系统对高频响应的敏感性,提高液压系统的可靠性。最终使自动操舵平稳性好、次数较少、舵叶转动幅度合理,达到减少舵机系统磨损、泄漏和转舵时推力损耗而节约能耗。
仿真结果表明构造设计出的非线性控制器具有良好的操纵性能,进一步可以开发出交互式仿真软件环境,能使船员比较直观地熟悉自动舵的性能、尽快掌握船舶航向控制的规律,从而保证航行的安全性。 |