摘要: |
轿车车身的尺寸偏差直接影响到整车外观、行驶风噪声、关门效果甚至整车平顺性,车身尺寸偏差大小不仅依赖车身制造过程控制,而且取决于车身设计阶段的工艺设计。因此,车身装配偏差分析与公差设计方法研究具有重要意义。然而,车身装配过程中零件间的多约束特征和多装配顺序影响,使得车身装配偏差累积规律十分复杂,传统尺寸链分析方法需要建立尺寸链方程,难以适应车身三维偏差分析;同时,传统的蒙特卡洛求解方法计算效率低下,难以应用于这种复杂车身产品的公差综合。为此,本文开展面向车身装配的三维偏差模型及求解方法研究,旨在提高车身公差设计水平。本文首先针对车身装配多约束特征及多装配顺序的特点,建立基于确定性定位分析的车身装配三维偏差模型;然后,研究偏差模型线性化求解方法和基于矩方法的二次化求解方法;最后,以三维偏差建模和求解方法作为核心算法,开发复杂车身装配三维公差分析系统,并应用于实例。主要研究工作及创新点如下:
(1)基于确定性定位分析的车身三维偏差模型传统的尺寸链模型需要建立尺寸链,难以应用于车身产品这种多约束、多装配顺序的装配偏差分析过程。本文提出一种新的车身装配三维偏差模型建模方法。该模型首先将车身装配多约束条件转化为确定性约束定位条件,根据给定的装配顺序将装配过程分解为一系列单个零件的确定性定位;然后,以零件偏差、夹具偏差的耦合偏差为输入,建立考虑定位点二阶几何信息的零件确定性定位分析模型。最后采用一系列确定性定位分析建立车身装配偏差分析模型。
(2)三维偏差模型的线性化求解方法传统的蒙特卡洛仿真计算效率低,难以应用于复杂车身装配公差设计这样需求大量迭代运算的场合,本文提出一种高效率的线性化求解方法。首先,对于非线性隐式模型,采用隐式求导和一阶泰勒级数展开得到确定性定位分析模型的输入输出间线性关系。然后,利用数理统计理论,建立输入输出统计参数的显式表达式,实现装配公差的线性化求解;最后,通过与蒙特卡洛方法的比较,验证了线性化方法的有效性和计算效率。该方法无需解大量非线性方程组,计算效率显著提高;
(3)三维偏差模型的二次化求解方法线性方法只能应用于装配偏差模型非线性程度较低的场合,针对模型较强非线性或零件尺寸为非正态分布的场合,本文进一步提出基于矩方法的确定性定位分析模型的二次化求解方法。首先,对确定性定位分析模型进行二次泰勒级数展开,采用有限差分法与牛顿-拉尔森法得到一阶、二阶及二阶混合敏感度矩阵;然后,根据零件偏差的前四阶矩计算零件定位偏差的均值和标准差,并分析了二次化方法的计算精度和效率;最后,通过与线性方法及蒙特卡洛方法的对比验证方法的有效性。该方法可应用于非线性模型或非正态分布输入,可对非线性隐式模型进行敏感度分析。
(4)三维偏差分析软件系统开发以三维偏差模型及求解方法为核心算法,采用VisualC++为开发工具,开发车身三维复杂装配偏差分析系统AVAS。系统采用基于功能的三层式结构,分别为算法层,数据层和用户层。采用车大灯安装和车门安装两个典型实例对系统及核心算法进行验证,将分析结果分别与三坐标实测数据及3DCS分析结果进行对比分析。系统具有如下特点:不依赖于其他CAD软件;可选择线性化方法或二次化求解方法进行公差分析,与采用蒙特卡洛相比效率更高;可在同一模型中计算多条装配顺序而无需重新建模。 |