当前位置: 首页> 交通专利数据库 >详情
原文传递 一种循环神经网络的汽车前向碰撞预警控制系统及方法
专利名称: 一种循环神经网络的汽车前向碰撞预警控制系统及方法
摘要: 本发明公开了一种循环神经网络的汽车前向碰撞预警控制系统及方法,本发明系统包括:速度传感器、加速度传感器、测距传感器、主控制器、制动模块、预警提示器、GPS模块、无线传输模块、远程控制终端。本发明远程控制终端判断自车与前车保持行车状态是否存在前向碰撞危险;若存在前向碰撞风险,远程控制终端通过循环神经网络对驾驶员预期制动强度进行预测;远程控制终端计算警报时刻;当存在前向碰撞危险时,驾驶员在警报时刻前没有进行避险操作,预警提示器发出警报;若驾驶员在警报时刻前进行了避险操作,远程控制终端进一步判断是否存在前向碰撞危险;补偿制动强度计算;并进行制动强度的补偿。本发明有效减少前向碰撞发生率。
专利类型: 发明专利
国家地区组织代码: 湖北;42
申请人: 武汉理工大学
发明人: 吴超仲;熊盛光;贺宜;郭柏晗
专利状态: 有效
申请日期: 2019-07-02T00:00:00+0800
发布日期: 2019-10-15T00:00:00+0800
申请号: CN201910587792.X
公开号: CN110329249A
代理机构: 武汉科皓知识产权代理事务所(特殊普通合伙)
代理人: 薛玲
分类号: B60W30/09(2012.01);B;B60;B60W;B60W30
申请人地址: 430070 湖北省武汉市洪山区珞狮路122号
主权项: 1.一种循环神经网络的汽车前向碰撞预警控制系统,其特征在于,包括:速度传感器、加速度传感器、测距传感器、主控制器、制动模块、预警提示器、GPS模块、无线传输模块、远程控制终端; 所述主控制器分别与所述的速度传感器、加速度传感器、测距传感器、制动模块、预警提示器、无线传输模块通过导线依次连接;所述无线传输模块与所述远程控制终端通过无线通信方式连接。 2.根据权利要求1所述的循环神经网络的汽车前向碰撞预警控制系统,其特征在于, 所述速度传感器安装于车辆上,用于采集车辆速度; 所述加速度传感器安装于车辆上,用于采集车辆加速度; 所述测距传感器安装于车辆前端,用于采集自车与前车之间的距离; 所述预警提示器安装于车辆上驾驶员附近,包括预警指示灯与蜂鸣器,用于提示驾驶员进行制动操作; 所述制动模块安装于车辆上,用于避免前向碰撞对整车制动强度进行补偿; 所述的GPS模块安装于车辆上,用于采集车辆位置信息; 所述主控制器安装于车辆上,用于收集速度传感器采集的车辆速度、加速度传感器采集的车辆加速度、GPS模块采集的车辆位置信息与测距传感器采集的自车与前车之间的距离,根据远程控制终端反馈结果决定所述预警提示器以及所述制动模块是否工作; 所述无线传输模块安装于车辆上,用于将所述主控制器采集的车辆信息传输至所述的远程控制终端和从所述的远程控制终端反馈信息传输至主控制器; 所述远程控制终端用于分析接收车辆信息,根据GPS位置信息判断前车位置,完成对驾驶员预期制动强度的自学习,判断是否存在前向碰撞风险。 3.一种利用权利要求2所述的循环神经网络的汽车前向碰撞预警控制系统进行循环神经网络的汽车前向碰撞预警控制方法,其特征在于, 步骤1:远程控制终端根据当前时刻自车车速,自车加速度,前车车速,前车加速度,自车与前车之间的距离,判断自车与前车保持行车状态是否存在前向碰撞危险; 步骤2:若存在前向碰撞风险,远程控制终端通过循环神经网络对驾驶员预期制动强度ae进行预测; 步骤3:远程控制终端计算警报时刻; 步骤4:当存在前向碰撞危险时,驾驶员在警报时刻Ta前没有进行避险操作,远程控制终端通过无线传输模块将危险信号传输至预警提示器,主控制器令预警提示器工作,发出警报; 步骤5:若驾驶员在警报时刻前进行了避险操作,远程控制终端进一步判断是否存在前向碰撞危险; 步骤6:补偿制动强度计算; 步骤7:当需要进行制动强度补偿时,远程控制终端通过无线传输模块将最小补偿制动强度传输至主控制器,主控制器发送命令给制动模块,制动模块通过对主制动器、辅助制动装置的调控,完成制动强度的补偿。 4.根据权利要求3所述的循环神经网络的汽车前向碰撞预警控制方法,其特征在于,步骤1中远程控制端根据智能网联内车辆GPS信息确认前车; 步骤1中所述自车车速为vr,所述自车加速度为ar,所述前车车速为vf,所述前车加速度为af,所述自车与前车之间的距离为D0; 主控制器接收速度传感器采集的vr,并通过无线传输模块发送至远程控制终端; 主控制器接收加速度传感器采集的ar,并通过无线传输模块发送至远程控制终端; 主控制器接收测距传感器采集的D0,并通过无线传输模块发送至远程控制终端; 步骤1中所述判断自车与前车保持行车状态是否存在前向碰撞危险为: 若ar>af,自车车速逐渐快于前车车速,则存在前向碰撞危险; 若arvf,若D>0则不存在前向碰撞危险,若D≤0则存在前向碰撞危险; D具体计算如下: 其中,D为当vr=vf时的自车与前车之间的距离。 5.根据权利要求3所述的循环神经网络的汽车前向碰撞预警控制方法,其特征在于,步骤2中所述对驾驶员预期制动强度ae进行预测具体过程为: 步骤2.1:构建循环神经网络的训练集; 步骤2.1构建循环神经网络的训练集为: 远程控制终端提取自车最近n次前向避险过程中制动时刻相关参数作为训练集,其中m为提取的第1次前向避险过程,训练集为: xi=({v'r,i,v'f,i,a'r,i,a'f,i,D'0,i},0<m≤i≤n+m,m,n,i∈Z) 其中,v'r,i为第i次前向避险过程中制动时刻的自车车速,v'f,i为第i次前向避险过程中制动时刻的前车车速,a'r,i为第i次前向避险过程中制动时刻的自车加速度,a'f,i为第i次前向避险过程中制动时刻的前车加速度,D'0,i为第i次前向避险过程中制动时刻的自车与前车之间的距离; 记录最近n次前向避险过程中制动时刻的制动强度集yi: yi=({ad,i},m≤i≤n+m,m,n,i∈Z) 其中,ad,i为第i次前向避险过程中制动时刻的真实制动强度; 步骤2.2:根据训练集对循环神经网络进行训练得到训练后循环神经网络; 步骤2.2中所述根据训练集对循环神经网络进行训练具体过程为: 确定循环神经模型具体结构,构建循环神经网络模型;构建的循环神经模型采用具有1个输入层,5个隐含层和1个输出层; 模型初始化:对模型参数中权重矩阵U、W、V和偏置矩阵b、c进行随机初始化;第i次前向避险过程中制动时刻的循环神经网络模型隐藏状态记作hi,模型的预测值记作激活函数f(x)一般为tanh,b为线性关系的偏倚,激活函数g(x)一般是Softmax函数;循环神经网络一般可以写作如下形式: 正向传播训练:将训练样本数据输入循环神经模型,通过正向传播,得出初始模型参数下循环神经模型的预测值,通过不断减少预测值与真实值yi的差值来调整模型参数; 反向传播训练:选取模型的损失函数作为优化目标,模型参数权重矩阵U、W、V和偏置矩阵b、c作为优化对象;根据误差使用梯度下降法迭代对于模型参数进; 选取交叉熵函数Loss作为损失函数,记作L,其表达如下: 计算权值矩阵V和偏置矩阵c的梯度: 计算i时刻隐藏状态梯度δi,在反向传播时,i的梯度损失由当前前向碰撞避险对应的梯度损失和下次前向碰撞避险i+1的梯度损失两部分共同决定,参考深度神经网络δi+1递推δi,函数diag表示取矩阵对角元素: 计算权值矩阵W,U和偏置矩阵b的梯度: 经过反复迭代: 步骤2.3:确定训练后的循环神经网络模型; 步骤2.3中所述根据训练集对循环神经网络进行训练具体过程为: 使用相同训练集xi重新输入优化后的循环神经网络模型; 综合正向传播训练与反向传播训练,对比预测值与真实值yi之间的误差,预测制动强度与真实制动强度yi平均误差应小于一定阈值;若误差满足要求,则确定模型参数;若误差不满足要求,则重复步骤2.2对参数进行调整,直到误差满足要求; 步骤2.4:远程控制终端将当前时刻的自车车速vr、前车车速vf、自车加速度ar、前车加速度af、自车与前车之间的距离D0代入优化后的循环神经网络模型不断对驾驶员期望制动强度进行预测ae。 6.根据权利要求3所述的循环神经网络的汽车前向碰撞预警控制方法,其特征在于,步骤3中所述远程控制终端计算驾驶员允许避险操作时间具体为: 当前时刻为T0,驾驶员预期制动强度为ae; 在驾驶员允许避险最晚操作时刻Te,自车车速为ve,r,前车车速为ve,f,驾驶员在允许避险最晚操作时刻制动后的两车之间距离D(t)计算公式如下: ve,r=(Te-T0)·ar+vr ve,f=(Te-T0)·af+vf 若要保证与前车不发生碰撞,那么在驾驶员允许避险最晚操作时刻Te应使D(t)≥0,即要求其判别式Δ≥0,临界条件为Δ=0,Te-T0为驾驶员允许避险操作时间,D(t)判别式Δ计算如下: 其中,T0为当前时刻,Te驾驶员允许避险最晚操作时刻,ve,r为驶员允许避险最晚操作时刻自车车速,ve,f为驶员允许避险最晚操作时刻前车车速,vr为当前时刻自车车速,ar为当前时刻自车加速度,vf为当前时刻自车车速,af为当前时刻自车加速度,D0为当前时刻自车与前车之间的距离,D(t)为驾驶员在允许避险最晚操作时刻制动后的两车之间距离函数,t为允许避险最晚操作时刻制动后时间; 通过上式即可计算出驾驶员允许避险最晚操作时刻Te; 但在实际情况下,警报时刻Ta应早于驾驶员允许避险最晚操作时刻Te,一方面由于警报发出后应给予驾驶员应急反应时间td,另一方面是汽车加速度变化是一个连续的过程,需要一定的响应时间tv,则警报时刻Ta可以表示如下: Ta=Te-td-tv。 7.根据权利要求3所述的循环神经网络的汽车前向碰撞预警控制方法,其特征在于,步骤5中所述远程控制终端进一步判断是否存在前向碰撞危险为: 远程控制终端将驾驶员真实制动时刻Td与真实制动强度ad计算驾驶员在允许避险最晚操作时刻制动后的两车之间距离D(t): ve,r=(Te-Td)·a'r+v'r ve,f=(Te-Td)·a'f+v'f 远程控制终端根据驾驶员真实制动时刻Td与真实制动强度ad计算D(t)判别式Δ: 其中,Td为真实制动时刻,Te驾驶员允许避险最晚操作时刻,ve,r为驶员允许避险最晚操作时刻自车车速,ve,f为驶员允许避险最晚操作时刻前车车速,v'r为驾驶员真实制动时刻自车车速,a'r为驾驶员真实制动时刻自车加速度,v'f为驾驶员真实制动时刻自车车速,a'f为驾驶员真实制动时刻前车加速度,D'0为驾驶员真实制动时刻自车与前车之间的距离,D(t)为驾驶员在允许避险最晚操作时刻制动后的两车之间距离函数,t为允许避险最晚操作时刻制动后时间; 若Δ<0,则存在前向碰撞危险,远程控制终端通过无线传输模块将危险信号传输至主控制器,主控制器令预警控制器工作,发出警报。 8.根据权利要求3所述的循环神经网络的汽车前向碰撞预警控制方法,其特征在于,步骤6中所述补偿制动强度计算为: 当警报发出后,驾驶员在应急反应时间td内应作出相应的操作,在车辆响应时刻Tv前完成避险操作,则远程控制终端通过无线传输模块将解除危险信号传输至主控制器,主控制器令预警控制器停止工作,解除警报;否则远程控制终端将通过安全距离计算是否需要补偿制动强度;在车辆响应时刻Tv远程控制终端提取自车车速vv,r,前车车速vv,f,自车加速度av,r,前车加速度av,f,自车与前车的距离Dv,当vv,r=vv,f时,车距为D1: Tv=Te-tv 当D1≥0时,远程控制终端通过无线传输模块将解除危险信号传输至主控制器,主控制器令预警控制器停止工作,解除警报;当D1<0时,远程控制终端传输信息让主控制器令制动模块进行制动强度补偿,补偿值为ac,在补偿控制后,应满足D1≥0: 由上式可以推导出补偿制动强度最小值acmin为: 其中,Tv为车辆响应时刻,Te驾驶员允许避险最晚操作时刻,td驾驶员应急反应时间,vv,r车辆响应时刻自车车速,vv,f为车辆响应时刻前车车速,av,r为车辆响应时刻自车加速度,av,f为车辆响应时刻前车加速度,ac为补偿制动强度,Dv为车辆响应时刻自车与前车的距离,D1为当vv,r=vv,f时自车与前车的距离。
所属类别: 发明专利
检索历史
应用推荐