摘要: |
融多项高新技术于一体的电动车辆具有无排放污染、噪声低等优点,在环保和节能方面具有不可比拟的优势,正在引发一场世界汽车工业革命。然而电动车辆运行的经济性、可靠性和安全性对其自身运动控制系统的性能却有着非常高的要求。针对这一实际问题和背景,结合电动车辆具体运行工况和环境特点,本论文研究了一种能对其实现有效运动控制的理论方法,并且集中探索了该方法在工程实现中的几项关键技术。主要工作、成果和结论有:
分析了电动车辆运动系统的构成及运行特点,建立了电动车辆系统的运动学模型,研究了相关的运动控制基础性理论;结合当前自动控制领域的一些成功方案设计了基于DSP的电动车辆运动控制系统。
研究了电动车辆运动系统的信息检测方法和技术实现手段:设计制作了以数字信号处理器(Digital Signal Processor,DSP)为核心的电动车辆运动控制系统的硬件检测系统,编制了相关的软件检测算法,实验结果表明,该硬件检测系统方案合理,可以完成对电动车辆运动系统的有效检测;从检测原理、交流采样方法和硬件实现方案等方面,研究了检测系统的误差,分析了各项主要误差的产生原因及量级大小;针对性地提出了采用硬件测频和软件校正相结合的方法实现同步采样的目的,采用偏差累积增量法动态优化采样周期等相应减小或修正误差的改进方法,以提高系统的检测精度。
研究了电动车辆运动控制策略和技术实现手段。讨论了快速几何法判别参考电压矢量所处扇区方法在驱动电机矢量控制中的实施要点,给出开关矢量作用时间的简化计算公式和零矢量的安排序列;从工程实践出发,结合CPLD技术成功设计了控制系统硬件实现方案,简化了硬件实现手段和控制算法,并编制了相关软件算法。
提出了一种采用电参量间接检测电动车辆驱动电机输出转矩的方法,实验结果表明:该方法测量精度高,稳定性好,不受现场机械振动等工艺噪音的影响。详细分析了无差拍控制方法的理论与具体实现方案;分析了电动车辆驱动主电路设计中几个重要参数的计算问题,如功率开关器件选择等。
对本车辆运动控制系统实现方法和技术手段进行的相关验证表明,本文所研究的电动车辆运动控制的方法正确有效,工程实现的关键技术实用、可行。
|