摘要: |
地铁列车在隧道内运行产生的活塞风与地铁通风和能耗关系密切。随着地铁的广泛应用,有关活塞风影响规律的深入研究对于实现地铁运营节能具有重要的理论价值和实际意义。论文重点研究活塞风对区间和车站各单元速度场和温度场的影响规律,分析有关活塞风影响效果的各因素,并给出能耗对比分析。
论文综合运用了理论分析、模型试验、现场实测和数值模拟等研究方法。其中,模型试验首次以重物下落作为列车运行动力,建立区间隧道微缩模型,研究隧道内活塞风风速的影响因素和分布规律;现场实测就各季节、各时段、各车况下对站台层、站厅层、楼梯、出入口、活塞风井和迂回风道的速度和温度进行测试,同时进行列车专开试验和隧道温度全天监测,得到大量翔实的实测数据;数值模拟借助SES地铁环控模拟软件,定性定量的分析活塞风对区间和车站各单元速度场和温度场的影响规律,开拓了SES在科研领域的应用范围;在理论分析中,综合运用了一维稳定流理论、一维非稳定流理论、科特湍流理论和三维非稳定可压缩流假设。同时引入速度增加倍数和最大升温幅度等无量纲量,完善了相关理论,使研究更为直观便捷。
通过活塞风对区间隧道各单元温度场和速度场影响规律的研究得到:列车以匀速、变速行驶时,区间隧道、活塞风井和迂回风道速度场的变化特点,区间三维方向上风速分布规律;区间隧道气温随时间、列车位置的变化过程,隧道内气温与壁温的相互影响,以及活塞风井温度的变化规律;对比了不同时段活塞风对区间、活塞风井和迂回风道速度场和温度场影响的累积效果。
由活塞风对车站各单元速度场和温度场影响规律的分析得到:站台、楼梯、出入口风速随时间的变化过程,以及列车变速时,风速随车速和列车位置的变化规律;站台、站厅风速和温度在纵向、竖向和水平方向上分布的特点;各单元速度场和温度场随车况、随时段的变化特点。
在活塞风影响规律研究的基础上,运用单因素试验分析了改善活塞风影响效果的各因素,并通过正交试验给出显著性分析,对比不同工况下活塞风引起的能耗状况,为扬长避短地利用活塞风,实现地铁运营节能提供参考。
|