摘要: |
在船舶集控室或者驾驶台通过自动控制设备操作主机的系统称为主机遥控系统。主机调速系统是主机遥控系统的一个重要组成部分。有关调速器的发明也越来越多,至今,调速器已经经历了四代产品。
船舶主机的调速器主要采用比例积分微分(PID)控制规律。PID控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。由于其算法简单、鲁棒性好和可靠性高,因而成为应用最为广泛的控制器之一。
在实际情况中,机舱中的大多数控制过程都存在非线性和时变,环境和对象之间一般不存在明确的、能用数学形式精确描述关系,常规PID控制在扰动和对象模型变动的情况下不具有良好的鲁棒性(所谓“鲁棒性”,是指控制对象在一定范围内变化时,它能在某种程度上保持系统的稳定性与动态性能的能力<‘[1]>,根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性)。20世纪80年代,新的控制策略——先进的控制技术正飞速发展起来,先进的控制技术是以现代控制理论和智能控制理论为基础各种高级控制技术的总称,包括预测控制、鲁棒控制、模糊控制、神经网络控制、专家控制等。这些控制技术,有一些已经有了很深入的研究,有了大量的理论材料和实践应用,但是有一些在理论上可行,但是应用于实际情况中,可能难以实现,甚至可能根本无法实现。
既然这些理论上比较“完美”的先进控制技术也存在着不足,那么能否将传统的PID控制与先进控制技术相结合,取长补短呢?按照这个思路,人们不断对这种新型的、复合型的控制器进行研究,显然,鲁棒性成为这类控制器优劣的主要衡量指标。
本文首先阐述了将一体化柴油主机的数学模型高阶滞后模型降阶为一阶或者二阶滞后模型的方法——阶跃测试响应法,然后通过二阶非对称Padei近似处理纯延迟环节。
为了得到具有高鲁棒性的PID控制器,本文基于<'H>2最优控制、<'H>∞控制和PID控制相结合,分别引出了LQR—PID和LMI—PID控制器,由LQR/LMI反馈系数确定的PID参数具有和LQR/LM工控制一致的强鲁棒性,同时是通过PID的形式体现出来,是对传统PID的一种拓展和改进。
为了针对性解决纯延迟问题,本文引入了内模设计方法,作为鲁棒控制之一的内模控制能同时兼顾系统的鲁棒稳定性和控制性能<'[2]>,然后从内模的角度去设计Smith预估控制系统,又基于Smith预估控制系统设计出Smith—PID控制器,从而推出了具有良好鲁棒性的PID参数,既具有Smith控制器具有的强鲁棒性,又具有简单易行的PID控制器的特点。
此外,在VB环境下建立了AUTOCHIEF4型主机遥控系统的转速控制与安全保护系统的仿真界面,采用先进控制算法整定出来的PID参数进行主机转速的仿真控制,并编写了安保系统各个通道的报警程序,对安保系统的功能进行了仿真。
本文的中心思想是通过先进控制算法和PID控制算法相结合,经过一系列变换和推导,得出PID的参数,从而让PID控制器的控制达到先进控制器的性能,仿真结果表明,这样的研究具有实际意义,并且达到了良好的效果。 |