摘要: |
连续的跟驰行为和换道行为是驾驶行为的主要构成部分,对交通拥挤和交通事故有着重要影响。通过无人机视频拍摄和图像处理方式,提取了曹安公路沿线的2个交叉路口间正常交通流状态下共600条多车高精度轨迹数据。首先,考虑车辆类型对驾驶行为产生直接的影响,分析了大车和小车的车辆轨迹特征变量分布的差异性,包括速度、加速度、碰撞时间倒数、车头时距等,在标记危险驾驶行为的过程中考虑车辆类型的影响。其次,针对不同的车辆类型,利用修正碰撞裕度对跟驰行为和换道行为进行风险性评估,将其划分为安全型和风险型。根据风险型行为发生的顺序以及持续时间,评估驾驶人的整体驾驶状态是否危险,作为危险驾驶行为识别的样本标记。分别利用离散小波变换和统计方法提取车辆轨迹的关键特征参数,为了提高模型识别效率,将关键特征参数进行排序,从而确定最优判别指标;最后,利用轻量梯度提升机(LGBM)算法对危险驾驶行为进行识别,并与随机森林、多层感知器、支持向量机等算法在精度上进行比较。研究结果表明:在上述研究条件下,LGBM算法对危险驾驶行为的理论识别率最高可达93.62%,可以实现基于机器学习算法的危险驾驶行为的高精度自动识别,该结果对于智能驾驶辅助系统的设计、道路交通安全决策的制定具有显著的意义。 |