当前位置: 首页> 交通中文期刊数据库 >详情
原文传递 基于聚类算法的交通网络节点重要性评价方法研究
题名: 基于聚类算法的交通网络节点重要性评价方法研究
作者: 王灵丽;黄敏;高亮
作者单位: 中山大学智能工程学院;中山大学广东省智能交通系统重点实验室;中山大学广东省交通环境智能监测与治理工程技术研究中心;北京交通大学综合交通运输大数据应用技术交通运输行业重点实验室
关键词: 城市交通;道路网络;节点重要性;改进FCM算法;PageRank算法
摘要: 评估交通网络中节点的重要性;识别出对网络效率起着重要作用的关键节点;对于预防和降低交通拥堵和交通事故等事件对路网整体效率的影响具有重要意义。为识别出关键节点;研究了一种基于聚类算法的交通网络节点重要性评价方法:将道路交通网络抽象为无向加权网络;以节点介数、节点交通量和PageRank值作为节点重要性评价指标;利用基于K-Means算法和随机森林加权的改进FCM算法确定交通网络节点重要性;适用于中小城市道路交通网络。实证分析表明;改进算法的聚类性能明显提高;目标函数值和迭代次数分别降低88.70%和61.5
期刊名称: 交通信息与安全
出版年: 2020
期: 02
页码: 80-88
检索历史
应用推荐