摘要: |
上下客行为是常见的人车交互交通行为,但随意地在路边或者禁停区域上下客,不但容易干扰道路交通秩序,还可能造成人员伤亡的恶性交通安全事故,需要及时检出以便疏导管理。受益于智慧灯杆的开发和部署,全路段的上下客行为检测成为可能。设计了一种基于智慧灯杆监控视频的人车交互行为模型HVIB(Human-Vehicle Interaction Behavior)及上下客行为识别方法,实现路边停车和上下客行为的检测。人车交互行为模型HVIB由车辆运动状态检测模块和人车关系检测模块组成。在车辆运动状态检测模块中,利用YOLOv4(You Only Look Once,Version4)目标检测模型和SORT(Simple Onlineand Realtime Tracking)跟踪算法输出高置信度目标信息,并抽取车辆时空位置特征表达。在人车关系检测模块中,结合人与车辆的空间位置变化和相对运动方向,形成人车关系的时空特征表达。通过计算视频中人车时空位置特征,基于车辆运动状态判别函数和人车关系判别函数输出车辆运动状态和人车关系类别,并依据不同人车交互行为的定义,可以实现上下客行为识别。使用真实城市交通场景视频数据,对多种天气条件(晴天、阴天、雨天)下的不同人车行为进行了识别试验。试验结果表明:所提出的方法可以全天候工作,其中在白天多种天气条件下,停车和上下客行为的检测准确率能达到90%和87%以上,夜晚正常天气条件下分别为82.5%和77.5%;同时,检测速度在每秒30帧以上,满足实际应用的实时性要求。 |