当前位置: 首页> 交通中文期刊数据库 >详情
原文传递 基于互信息贝叶斯网络的交通事故严重程度分析
题名: 基于互信息贝叶斯网络的交通事故严重程度分析
作者: 吕通通;张湛;陆林军;张延猛
作者单位: 上海交通大学船舶海洋与建筑工程学院
关键词: 交通安全;省际客运;事故分析;贝叶斯网络;互信息
摘要: 为掌握省际客运行业事故严重程度影响因素,采用互信息及贝叶斯网络方法构建模型,分析各因素变化与事故严重程度的定量互动关系。鉴于行业样本量较小及专家知识建模存在主观性,采用改进离散算法挖掘数据,提出结合互信息与交叉验证的先验网络构造方法。以上海市2005-2019年741起省际客运事故数据为例进行模型分析。结果表明:对事故最敏感的影响因素为驾驶员性别、天气和车辆类型;其中“女性驾驶员”“雪、大风、雾”“中型客车”对事故严重性的权重占比分别为13.5%,8.8%和5.7%;此外,驾驶员年龄对群死群伤事故贡献较小;客车尺寸与安全性非单调关系;00:00-05:00引发7人以上受伤的概率同比上升9%;季节、天气、时间因素与财产损失无直接关联。模型泛化能力优于对比模型,AUC均值为0.644588,命中率达到 97.3%。
期刊名称: 交通信息与安全
出版日期: 202106
出版年: 2021
期: 06
页码: 36-43
检索历史
应用推荐