题名: | 基于互信息贝叶斯网络的交通事故严重程度分析 |
作者: | 吕通通;张湛;陆林军;张延猛 |
作者单位: | 上海交通大学船舶海洋与建筑工程学院 |
关键词: | 交通安全;省际客运;事故分析;贝叶斯网络;互信息 |
摘要: | 为掌握省际客运行业事故严重程度影响因素,采用互信息及贝叶斯网络方法构建模型,分析各因素变化与事故严重程度的定量互动关系。鉴于行业样本量较小及专家知识建模存在主观性,采用改进离散算法挖掘数据,提出结合互信息与交叉验证的先验网络构造方法。以上海市2005-2019年741起省际客运事故数据为例进行模型分析。结果表明:对事故最敏感的影响因素为驾驶员性别、天气和车辆类型;其中“女性驾驶员”“雪、大风、雾”“中型客车”对事故严重性的权重占比分别为13.5%,8.8%和5.7%;此外,驾驶员年龄对群死群伤事故贡献较小;客车尺寸与安全性非单调关系;00:00-05:00引发7人以上受伤的概率同比上升9%;季节、天气、时间因素与财产损失无直接关联。模型泛化能力优于对比模型,AUC均值为0.644588,命中率达到 97.3%。 |
期刊名称: | 交通信息与安全 |
出版日期: | 202106 |
出版年: | 2021 |
期: | 06 |
页码: | 36-43 |