关键词: |
Eye movements, Visual tasks, Cockpits, Group dynamics, Human performance, Statistical tests, Time series analysis, Markov processes, Flight simulators, Transport aircraft, Flight crews |
摘要: |
Multi-person teams are sometimes responsible for critical tasks, such as flying an airliner. Here we present a method using gaze tracking data to assess shared visual attention, a term we use to describe the situation where team members are attending to a common set of elements in the environment. Gaze data are quantized with respect to a set of N areas of interest (AOIs); these are then used to construct a time series of N dimensional vectors, with each vector component representing one of the AOIs, all set to 0 except for the component corresponding to the currently fixated AOI, which is set to 1. The resulting sequence of vectors can be averaged in time, with the result that each vector component represents the proportion of time that the corresponding AOI was fixated within the given time interval. We present two methods for comparing sequences of this sort, one based on computing the time-varying correlation of the averaged vectors, and another based on a chi-square test testing the hypothesis that the observed gaze proportions are drawn from identical probability distributions.We have evaluated the method using synthetic data sets, in which the behavior was modeled as a series of activities, each of which was modeled as a first-order Markov process. By tabulating distributions for pairs of identical and disparate activities, we are able to perform a receiver operating characteristic (ROC) analysis, allowing us to choose appropriate criteria and estimate error rates.We have applied the methods to data from airline crews, collected in a high-fidelity flight simulator (Haslbeck, Gontar Schubert, 2014). We conclude by considering the problem of automatic (blind) discovery of activities, using methods developed for text analysis. |