当前位置: 首页> 学位论文 >详情
原文传递 铁路GSM-R场强覆盖的预测与调整方法的研究
论文题名: 铁路GSM-R场强覆盖的预测与调整方法的研究
关键词: 高速铁路;综合数字移动通信系统;BIM技术;GIS技术;场强覆盖预测
摘要: 目前,铁路综合数字移动通信系统(Global System for Mobile Communications-Railway,GSM-R)已经普遍应用到我国各大高铁建设中,比如京沪高铁以及本文项目背景银西高铁等。虽然GSM-R系统普遍应用在高铁建设之中,但如果网络节点搭建不合理,后期可能要对基站重新选址建造,极大地浪费建设成本。因此本文首先利用数据挖掘算法在不同的外界环境下构建无线场强覆盖预测模型,为得到相对全面的无线传播模型建立基础,再通过结合3D场景的可视化平台,对GSM-R系统进行场强覆盖、优化。可视化平台能够高效的管理GSM-R系统运营,也可提前预知GSM-R网络规划的不足。稳定有效地GSM-R网络不仅可以保证列车的行车安全,又可以为GSM-R网络建设减少成本。主要研究内容如下:
  首先,简述了无线通信随着高速铁路的发展,以及高速铁路无线通信的原理。针对电波传输中链路通信数据过多、繁琐,引入复杂网络算法检测网络中节点所带有权值对通信资源进行再分配,合理的调度资源并稳定的传输通信数据。引入反向传播神经网络(Back Propagation Neural Network,BPNN)在该神经网络中加入遗传算法(Genetic Algorithm,GA)形成GA-BP传播模型。提出一种布谷鸟搜索算法(Cuckoo Search Algorithm,CS)优化支持向量回归(Support Vector Regression,SVR)的传播模型,将上述传播模型与GSM-R场强相结合形成高精度的预测模型。
  其次,本文介绍了建筑信息模型(Building Information Modeling,BIM)与地理信息系统(Geographic Information System,GIS)实现原理,并对比了各种模型绘制软件性能的优劣;将现场设备采集到的数据导入到性能最优模型绘制软件中进行3D建模,在构建模型中使用GIS地图场景渲染使模型周边环境更加真实。利用GIS提供的转换插件,解决了BIM和GIS的数据互通对接的问题,使BIM模型与GIS平台融合,用于搭建基于3D场景下的GSM-R无线通信网络覆盖优化系统。
  最后,将场强预测模型与BIM+GIS平台相耦合,搭建了基于3D场景下的GSM-R无线通信网络覆盖优化系统。该耦合系统把BIM模型当作集合直观的呈现出来,并对对GSM-R系统方案进行优化,重新对GSM-R系统的组网方案进行模拟预测,消除覆盖盲区,确保信号灵敏度和同频干扰达到标准,从而形成最优的GSM-R组网方案。该系统能模拟计算全线路任一点处场强,对比接收灵敏度,从而消除覆盖盲区。系统对场强覆盖情况进行判别,若无线场强低于接收灵敏度阈值或上下行链路资源预算不平衡时,可调整俯仰角、基站发射功率及基站天线高度,并重新计算覆盖。
  论文主要贡献:
  (1)提出了GA-BP和CS-SVR传播模型,结合GSM-R场强耦合出了在山区、隧道、桥梁三个场景下新的高精确度场强预测模型。
  (2)场强预测模型与BIM+GIS平台相结合,构建了三维可视化的GSM-R无线通信网络覆盖优化系统。
  (3)利用上述模型中神经网络的特性,提升了模型处理实际场强预测的效率。
作者: 靳翔
专业: 交通运输工程
导师: 郑云水;余杰
授予学位: 硕士
授予学位单位: 兰州交通大学
学位年度: 2021
检索历史
应用推荐