论文题名: | 基于智能车辆视觉导航的道路检测技术的研究 |
关键词: | 智能车辆;视觉导航;图像增强;边缘检测;霍夫变换法 |
摘要: | 近年来,视觉辅助导航已成为智能车辆导航领域的研究热点之一,其中道路检测是视觉辅助导航中的关键技术,道路图像的检测结果会受到噪声质量及成像质量的严重影响。本文以道路检测技术中将会遇到的几个关键问题作为研究重点,对道路图像进行增强、边缘检测等算法的处理,主要研究了基于图像处理的道路检测技术。 本文根据道路图像的噪声类型,针对不同的噪声采取相应地去噪方案,提出一种改进的直方图均衡算法,可以有效地解决图像的模糊问题;而对于雨雪天气造成的椒盐噪声,利用中值滤波能够有效地去除其噪声;对于高斯白噪声,则采用自适应滤波的滤波效果最好。 在图像边缘检测中,通过对经典边缘检测算法的具体分析与比较,提出一种基于多尺度几何分析的Beamlet变换的边缘检测算法。该算法符合最优图像特征的表示方法,能够充分利用图像的几何正则性,检测出的道路边缘更加连续清晰,使道路的边缘特征得到较好的保护。在阈值分割环节,通过对几种传统阈值分割方法的比较,根据道路图像特点,确定使用最大类间方差法进行阈值分割。 在进行道路边界线提取时,采用一种基于直线点密度的霍夫变换方法,将图像空间和霍夫空间有机地统一起来,该方法能够避免由于过度积累而导致伪直线过多的缺点,同时具有较好的鲁棒性和抗噪性,从而提高道路检测的准确性。 文中通过对采集的道路图像添加椒盐噪声、高斯白噪声以及模糊化的处理,模拟实时道路检测中可能会遇到的影响图像质量的问题,仿真实验结果论证本文所提出的算法能够准确地检测出道路图像中的车道线,提高道路检测的识别率,证明文中算法的有效性和可靠性,为后续的研究工作提供有用的道路信息。 |
作者: | 吕欣 |
专业: | 检测技术与自动化装置 |
导师: | 樊春玲 |
授予学位: | 硕士 |
授予学位单位: | 青岛科技大学 |
学位年度: | 2010 |
正文语种: | 中文 |