当前位置: 首页> 交通中文期刊数据库 >详情
原文传递 基于时间序列聚类和LSSVM的隧道拱顶位移预测
题名: 基于时间序列聚类和LSSVM的隧道拱顶位移预测
正文语种: 中文
作者: 杨清浩;胡雄玉;陈子全;
关键词: 隧道监测;拱顶位移;时间序列预测;K-medoids聚类;LSSVM;小波包变换
摘要: 在隧道施工中,拱顶下沉位移的监控量测及其发展趋势的有效预测,对隧道的安全施工具有重要意义。提出一种结合K-medoids聚类算法和最小二乘支持向量机(LSSVM)的智能算法对拱顶下沉位移进行预测,并通过汶马高速鹧鸪山隧道的现场实测数据验证了该方法的有效性。研究结果表明:同一类拱顶下沉位移时间序列用同一模型预测具有可行性;隧道拱顶下沉位移是不平稳时间序列,相比直接用LS-SVM建立模型,采用WPT方法和LSSVM结合的算法具有更高的预测精度;以作为聚类中心的断面作为参考样本预测当前监测断面拱顶下沉位移时,只
期刊名称: 公路工程
出版年: 2019
期: 01
页码: 9-15,31
检索历史
应用推荐