当前位置: 首页> 交通专利数据库 >详情
原文传递 基于表面声波技术的细胞或粒子计数方法
专利名称: 基于表面声波技术的细胞或粒子计数方法
摘要: 本发明公开了基于表面声波技术的细胞或粒子计数方法。现有细胞计数方法要么只适合体积大的细胞计数或价格昂贵,要么时间过长。本发明在声表面波器件的声表面波传播路径上制作微流通道;通过微量泵连接注射器输送细胞流体或粒子流体进入微流通道,利用鞘流技术驱动细胞流体或粒子流体实现聚焦,使微流通道中的细胞或粒子呈现单排列,细胞或粒子间保持距离,依次流过微流通道;声表面波器件与检测仪器连接,检测仪器工作后,测出传输参数,通过绘制传输参数在谐振频率点的值随着时间变化的图像,得到细胞或粒子数量信息。本发明通过测试传输参数的方式变现出来,达到了实时测试数据,提高了技术精度。
专利类型: 发明专利
国家地区组织代码: 浙江;33
申请人: 杭州电子科技大学
发明人: 轩伟鹏;胡天玉;张文瑞;陈金凯;黄汐威;孙玲玲;骆季奎
专利状态: 有效
申请日期: 2019-04-19T00:00:00+0800
发布日期: 2019-08-20T00:00:00+0800
申请号: CN201910316875.5
公开号: CN110146428A
代理机构: 杭州君度专利代理事务所(特殊普通合伙)
代理人: 黄前泽
分类号: G01N15/10(2006.01);G;G01;G01N;G01N15
申请人地址: 310018 浙江省杭州市下沙高教园区2号大街
主权项: 1.基于表面声波技术的细胞或粒子计数方法,其特征在于:该方法具体如下: 1)在压电衬底上制作具有叉指电极的声表面波器件; 2)在声表面波器件的声表面波传播路径上制作微流通道; 3)通过微量泵连接注射器输送细胞流体(细胞流体指培养液和细胞的混合物)或粒子流体(粒子流体指磷酸盐缓冲液和粒子的混合物)进入微流通道,利用鞘流技术驱动细胞流体或粒子流体实现聚焦,使微流通道中的细胞或粒子呈现单排列,细胞或粒子间保持距离,依次流过微流通道; 4)声表面波器件与检测仪器连接,检测仪器工作后,测出传输参数,通过绘制传输参数在谐振频率点的值随着时间变化的图像,得到细胞或粒子数量信息。 2.根据权利要求1所述的基于表面声波技术的细胞或粒子计数方法,其特征在于:所述的压电衬底采用压电单晶材料或压电薄膜材料。 3.根据权利要求2所述的基于表面声波技术的细胞或粒子计数方法,其特征在于:压电单晶材料为铌酸锂、钽酸锂或石英,压电薄膜材料为氧化锌薄膜或氮化铝;叉指电极材料为金、铝、Mo、W、Pt、石墨烯、碳纳米管、碳纳米管复合材料或导电胶。 4.根据权利要求1所述的基于表面声波技术的细胞或粒子计数方法,其特征在于:所述的叉指电极是平行叉指电极或聚焦型叉指电极;若叉指电极为平行型,叉指宽度为100nm~100um,叉指间距为100nm~100um,声孔径为100um~10mm,叉指对数为10~100对;若叉指电极为聚焦型,弧度为120°,声表面波的波长为1~100um,叉指对数为10~50对。 5.根据权利要求1~4中任一项所述的基于表面声波技术的细胞或粒子计数方法,其特征在于:所述的鞘流技术通过微流通道的结构实现,微流通道选用玻璃材料,微流通道包括玻璃管道A、玻璃管道B和玻璃管道C;玻璃管道A的入流口a通入细胞培养液,玻璃管道B的入流口b通入细胞与培养液的混合物,玻璃管道C的入流口c通入细胞培养液;玻璃管道A和玻璃管道C的出流口均连通玻璃管道B中部的汇流口e,玻璃管道B的出流口为d,玻璃管道A中细胞培养液、玻璃管道B中的细胞与培养液混合物以及玻璃管道C的细胞培养液在玻璃管道B的汇流口汇流后由玻璃管道B的出流口输出;由于玻璃管道A和玻璃管道C的鞘流聚焦作用,使得汇流口e到玻璃管道B的出流口d的这段管道中的细胞呈现单排列,细胞间保持距离。 6.根据权利要求1~4中任一项所述的基于表面声波技术的细胞或粒子计数方法,其特征在于:所述的鞘流技术通过微流通道的结构实现,微流通道选用玻璃材料,微流通道包括玻璃管道A、玻璃管道B和玻璃管道C;玻璃管道A的入流口a通入磷酸盐缓冲液,玻璃管道B的入流口b通入粒子与磷酸盐缓冲液的混合物,玻璃管道C的入流口c通入磷酸盐缓冲液;玻璃管道A和玻璃管道C的出流口均连通玻璃管道B中部的汇流口e,玻璃管道B的出流口为d,玻璃管道A中磷酸盐缓冲液、玻璃管道B中的细胞与磷酸盐缓冲液混合物以及玻璃管道C的磷酸盐缓冲液在玻璃管道B的汇流口汇流后由玻璃管道B的出流口输出;由于玻璃管道A和玻璃管道C的鞘流聚焦作用,使得汇流口e到玻璃管道B的出流口d的这段管道中的粒子呈现单排列,粒子间保持距离。 7.根据权利要求1所述的基于表面声波技术的细胞或粒子计数方法,其特征在于:所述测试传输参数的检测仪器是单独的声表面波检测仪或实验用的网络分析仪;声表面波器件的一个叉指电极接收检测仪器的射频信号,发出声表面波,通过压电衬底和微流通道,被声表面波器件的另一个叉指电极接收,从而检测仪器测得传输参数的频率、幅度和相位随微流管道中液体有无细胞或粒子情况而变化,并通过检测传输参数的频率、幅度和相位,获得声波路径上有无细胞或粒子的信息,具体为:当微流通道中无细胞时,液体吸收声波,接收端叉指电极所获得的信号较弱,测得传输参数在谐振频率点的值较小;当管道液体中含有细胞时,由于细胞有细胞膜,细胞膜的存在会阻止声波的吸收,声波被吸收的能量变小,接收端叉指电极所获得的信号比液体中不含有细胞时的信号强,测得传输参数在谐振频率点的值较大;而同等体积的磷酸盐缓冲液和同等体积的粒子与磷酸盐缓冲液混合物吸收声波的能量不同,接收端叉指电极所获得的信号也不同,测得传输参数在谐振频率点的值便不同;因此,通过绘制传输参数在谐振频率点的值随着时间变化的图像,并统计图像中尖点的个数实现细胞或粒子计数。 8.根据权利要求1、2、3、4或7中任一项所述的基于表面声波技术的细胞或粒子计数方法,其特征在于:所述的压电衬底焊接在PCB基板上。 9.根据权利要求1、2、3、4或7中任一项所述的基于表面声波技术的细胞或粒子计数方法,其特征在于:所述的注射器选用容积为1ml、内径为4.7mm的标准医用注射器。 10.根据权利要求5所述的基于表面声波技术的细胞或粒子计数方法,其特征在于:所述的玻璃管道A和玻璃管道C中液体流速为3ul/min~1000ul/min,玻璃管道B中液体流速为2ul/min~1000ul/min。
所属类别: 发明专利
检索历史
应用推荐