摘要: |
随着现代高科技的发展及交通事业的需求,智能交通系统已成为人们关注的热点问题。车牌识别系统作为智能交通系统的重要组成部分,在桥梁路口自动收费、停车场无人管理、违章车辆自动记录等领域都有着广泛的应用,它的实现具有巨大的经济价值和现实意义。
车牌识别系统作为一个综合的实时的计算机视觉系统,其核心技术主要包括车牌定位、字符分割和字符识别三个部分。现有的车牌识别技术多数基于灰度图像特征,而颜色作为车牌特征中的重要信息,却没有得到充分的利用。
本文主要针对车牌识别技术中颜色信息的应用进行研究。在分析了国内外研究现状的基础上,本文主要完成了以下四方面工作:
研究了车牌识别技术中可利用的颜色信息。
提出了基于DOG模型和颜色聚类的车牌定位算法。首先根据人眼的视觉野结构,利用DOG模型进行车牌灰度图像的边缘检测;再对该图像进行中值滤波和形态学运算,通过车牌的几何和结构特征对车牌进行粗定位;当利用字符和笔画特征定位失败后,利用车牌颜色特征,进行精确定位。
提出了基于颜色聚类和神经网络的车牌类型识别算法。利用基于颜色分量垂直投影的K-means粗分类进行有效区域提取,以解决光照不均和车牌褪色等问题;利用颜色聚类对有效区域进行颜色特征提取;再通过两级BP神经网络进行车牌类型识别。
提出了基于YCbCr空间的特殊字符粗分类算法。根据特殊字符在Cb及Cr空间中的特征对车牌首字符进行粗分类。
实验表明,本文提出的基于DOG模型和颜色聚类的车牌定位算法对光照和噪声有很强的鲁棒性;基于颜色聚类和神经网络的车牌类型识别算法有较强的实用性;基于YCbCr空间特性的特殊字符分类有助于提高汉字的识别率。
|