摘要: |
论文以基于机器视觉的道路识别与障碍物检测为研究对象,采用动态图像处理技术为行驶车辆提供环境状态信息及车辆行驶状态信息。综合利用车辆的当前行驶车道状态(弯道或者直道)和距离信息实现了障碍物的检测与跟踪。
论文首先介绍了智能车辆在国内外的发展情况,并介绍了各大公司及研究机构的在智能车辆开发方面的成果和产品。介绍了机器视觉在辅助导航系统、自适应巡航控制系统、自动走停辅助系统、交通信号识别系统和辅助换道系统等智能车辆中的应用。最后介绍了上个世纪80年代以来机器视觉算法的发展状况。
论文讨论了基于视频处理的道路识别技术。综合分析了各种图像预处理技术,并通过实验对比分析,再选用适合课题的预处理算法;然后提出了基于视频处理的逐行最优阈值分割算法,以解决单一阈值对道路图像分割不完全的情况,并根据视频处理特性对逐行最优阈值分割算法作了改进;提出了基于链码思想及边界跟踪的分道线检测技术,以及基于车道透视变换模型的相邻分道线段斜率差的车道二维重建技术;最后集中分析了通过分道线检测技术能为智能车辆提供的信息。实验结果表明该道路识别技术有很好的实时性、可靠性和准确性。
论文提出了基于单目视觉的障碍物检测、识别和跟踪技术,构造了完整的车辆检测方案。本文提出了一种基于信息熵理论的障碍物粗定位,并分别针对前方车辆在前方车道内行驶和压线行驶的情况提出了相应的基于边界脉冲信号检测的障碍物左右边界定位算法。提出采用有色噪声的卡尔曼滤波技术进行运动物体跟踪预测,从理论上证明了其准确性,并针对具体问题进行了实际的方程求解。公路实验结果证明了本方法能够准确的定位前方障碍物的下、左和右边界,且能区分破损路面、积水和桥梁阴影等伪障碍物。
论文论述了摄像机标定技术和计算机视觉测距的基本方法与典型技术。介绍了摄像机成像模型,提出了摄像机的标定技术。分别对双目和单目测距方法作了原理性的介绍。基于视觉测距原理,在分道线重建和透视投影原理的理论基础上,建立了一种针对高速公路的单目视觉距离测量方法。 |