当前位置: 首页> 交通专利数据库 >详情
原文传递 一种基于时变动力学模型的四轮转向汽车稳定性控制方法
专利名称: 一种基于时变动力学模型的四轮转向汽车稳定性控制方法
摘要: 一种基于时变动力学模型的四轮转向汽车稳定性控制方法,其特征在于,该方法包括参考模型、轮胎数据处理器、MPC控制器、CarSim汽车模型;参考模型用于确定期望的汽车横摆角速度和质心侧偏角;轮胎数据处理器用于确定轮胎的侧偏角、侧向力和侧向力梯度;CarSim汽车模型用于输出汽车的实际运动状态信息,包括汽车纵向速度、横摆角速度、质心侧偏角和路面附着系数;MPC控制器根据期望的汽车横摆角速度、质心侧偏角和汽车的实际运动状态信息,优化求解出汽车的后轮转角,输出给CarSim汽车模型,控制汽车实现稳定性控制。
专利类型: 发明专利
国家地区组织代码: 吉林;22
申请人: 长春工业大学
发明人: 李绍松;王国栋;高嵩;张邦成;于志新;崔高健;卢晓辉;韩玲;李政
专利状态: 有效
发布日期: 2019-01-01T00:00:00+0800
申请号: CN201810735047.0
公开号: CN109050659A
分类号: B62D6/00(2006.01)I;B60W30/045(2012.01)I;B62D101/00(2006.01)N;B62D111/00(2006.01)N;B62D137/00(2006.01)N;B;B62;B60;B62D;B60W;B62D6;B60W30;B62D101;B62D111;B62D137;B62D6/00;B60W30/045;B62D101/00;B62D111/00;B62D137/00
申请人地址: 130012 吉林省长春市延安大街2055
主权项: 1.一种基于时变动力学模型的四轮转向汽车稳定性控制方法,其特征在于,该方法包括参考模型、轮胎数据处理器、MPC控制器、CarSim汽车模型;参考模型用于确定期望的汽车横摆角速度和质心侧偏角;轮胎数据处理器用于确定轮胎的侧偏角、侧向力和侧向力梯度;CarSim汽车模型用于输出汽车的实际运动状态信息,包括汽车纵向速度、横摆角速度、质心侧偏角和路面附着系数;MPC控制器根据期望的汽车横摆角速度、质心侧偏角和汽车的实际运动状态信息,优化求解出汽车的后轮转角,输出给CarSim汽车模型,控制汽车实现稳定性控制;该方法包括以下步骤:步骤1、建立参考模型,确定期望的汽车横摆角速度和质心侧偏角,其过程包括如下子步骤:步骤1.1、采用线性二自由度汽车模型作为参考模型,其运动微分方程表达式如下:其中:β是汽车质心侧偏角;γ是汽车横摆角速度;Iz是绕汽车质心铅垂轴的横摆转动惯量;Ux是汽车纵向速度;lf和lr分别是汽车质心至前、后轴的距离;Cf和Cr分别是汽车前、后轮轮胎的侧偏刚度;δf是驾驶员操纵方向盘产生的汽车前轮转角;步骤1.2、将公式(1a)转换成传递函数,形式如下式:基于公式(2)得到期望的汽车横摆角速度:其中:γref是期望的汽车横摆角速度;wn是系统的固有频率;ξ是系统阻尼;Gω(s)是传递函数增益;wd=k1wn,ξd=k2ξ,Gkω(s)=k3Gω(s);k1、k2、k3是改善系统相位延迟和响应速度的参数;步骤1.3、设定期望的质心侧偏角为:βref=0      (4)步骤2、设计轮胎数据处理器,其过程包括如下子步骤:步骤2.1、设计轮胎侧偏角计算模块,前、后轮轮胎侧偏角通过下式计算获得:其中:αf和αr分别是汽车前、后轮轮胎的侧偏角;δf是汽车前轮转角,δr是汽车后轮转角;步骤2.2、设计轮胎侧向力和轮胎侧向力梯度计算模块,为了获得轮胎的非线性特性,基于Pacejka轮胎模型,获取不同路面附着系数下的轮胎侧向力与轮胎侧偏角的关系曲线,得到轮胎侧偏特性三维图;获取不同路面附着系数下的轮胎侧向力对轮胎侧偏角导数的关系曲线,得到轮胎侧向力梯度三维图;轮胎数据处理器将当前时刻实际的轮胎侧偏角和路面附着系数分别输入到轮胎侧偏特性三维图和轮胎侧向力梯度三维图中,通过线性插值法分别获得当前时刻的轮胎侧向力和轮胎侧向力梯度,并输出给MPC控制器;在每个控制周期轮胎数据处理器更新一次轮胎侧向力和轮胎侧向力梯度值;其中:Pacejka轮胎模型如下:Fy,j=μDsin(Catan(Bαj‑E(Bαj‑αjtan(Bαj))))其中:j=f,r,表示前轮和后轮;Fy,j是轮胎侧向力,αj是轮胎侧偏角;B,C,D和E取决于车轮垂直载荷Fz;a0=1.75;a1=0;a2=1000;a3=1289;a4=7.11;a5=0.0053;a6=0.1925;步骤3、设计MPC控制器,其过程包括如下子步骤:步骤3.1、建立预测模型,其过程包括如下子步骤:步骤3.1.1、线性化轮胎模型,其表达式如下:其中:是在当前侧偏角的轮胎侧向力梯度值;是轮胎的残余侧向力,通过如下公式计算:其中:是基于轮胎侧偏特性三维图,通过线性插值法获得的轮胎侧向力;是基于轮胎侧偏刚度特性三维图,通过线性插值法获得的轮胎侧向力梯度;是当前时刻实际的轮胎侧偏角;基于公式(6),在滚动预测过程中,设计轮胎侧向力表达式如下:其中:其中:P是预测时域;上标“k+i|k”表示在当前时刻k预测的将来第i时刻;ρk+i|k和ξk+i|k是调节变化的权重因子;步骤3.1.2、建立预测模型,其运动微分方程表达式为:将公式(9)带入公式(10),得到在滚动预测过程中的预测模型为:步骤3.1.3、建立预测方程,用于预测系统未来输出,将公式(11)写成状态空间方程,用于设计预测方程,具体如下:y(k)=Cx(t)     (12)其中:为了实现汽车横摆角速度和质心侧偏角的跟踪控制,将连续时间系统的预测模型转换成离散时间系统的增量式模型:其中:取样时间k=int(t/Ts),t是仿真时间,Ts是仿真步长;步骤3.2、设计优化目标及约束条件,其过程包括如下子步骤:步骤3.2.1、用期望的汽车横摆角速度、质心侧偏角和实际的汽车横摆角速度、质心侧偏角误差的二范数作为横摆角速度、质心侧偏角跟踪性能指标,体现汽车的轨迹跟踪特性,其表达式如下:其中:γref是期望的汽车横摆角速度;γ是实际的汽车横摆角速度;βref是期望的汽车质心侧偏角;β是实际的汽车质心侧偏角;P是预测时域;k表示当前时刻;Q1、Q2是加权因子;步骤3.2.2、用控制量变化率的二范数作为转向平滑指标,体现横摆角速度和质心侧偏角跟踪过程中的转向平滑特性,控制量u是汽车后轮转角,建立离散二次型转向平滑指标为:其中:M是控制时域;△u是控制量的变化量;k表示当前时刻;S是加权因子;步骤3.2.3、设置执行器物理约束,满足执行器要求:利用线性不等式限制后轮转角及其变化量的上下限,得到转向执行器的物理约束,其数学表达式为:其中:δrmin是后轮转角下限,δrmax是后轮转角上限;△δrmin是后轮转角变化量的下限;△δrmax是后轮转角变化量的上限;步骤3.3、求解系统预测输出,其过程包括如下子步骤:步骤3.3.1、利用线性加权法将步骤3.2.1所述跟踪性能指标和步骤3.2.2所述转向平滑指标转化为单一指标,构建汽车稳定性多目标优化控制问题,该问题要满足转向执行器的物理约束,且输入输出符合预测模型:服从于i)预测模型ii)约束条件为公式(16)步骤3.3.2、在控制器中,采用二次规划算法,求解多目标优化控制问题(17),得到最优开环控制序列△δr为:选取当前时刻最优开环控制序列中的第一个元素△δr(0)进行反馈,与前一时刻进行线性叠加,输出给CarSim汽车模型,实现汽车的稳定性控制。
所属类别: 发明专利
检索历史
应用推荐