专利名称: |
沼液理化指标近红外光谱同步快速检测方法 |
摘要: |
沼液理化指标近红外光谱同步快速检测方法属于厌氧发酵液检测技术;本方法通过样品采集、理化指标测定、近红外光谱采集、光谱预处理及样品集划分、基于双重遗传模拟退火算法的特征波长优选后,将校正集光谱数据分别按双重遗传模拟退火算法优选的沼液化学需氧量、挥发性脂肪酸和氨氮理化指标的特征波长建立相应的偏最小二乘回归模型,并使用验证集对回归模型的精度进行评测,建立快速检测模型,对需检测理化指标的沼液样本离心后取上清液进行近红外光谱扫描,再按优选的相应理化指标特征波长输入检测模型,完成沼液理化指标同步快速检测;本方法检测速度快,精度高,检测项目全。 |
专利类型: |
发明专利 |
国家地区组织代码: |
黑龙江;23 |
申请人: |
黑龙江八一农垦大学 |
发明人: |
刘金明;王娜;程秋爽;孙勇 |
专利状态: |
有效 |
申请号: |
CN201811323250.3 |
公开号: |
CN109507143A |
分类号: |
G01N21/3577(2014.01)I;G;G01;G01N;G01N21 |
申请人地址: |
163319 黑龙江省大庆市高新区新风路5号 |
主权项: |
1.一种沼液理化指标近红外光谱同步快速检测方法,所述方法包括步骤是:①、样品采集:以正常产气的半连续厌氧发酵罐中沼液为样品,每4小时采样一次,采样量40ml,采样30天,共采样180个;样品在6000r/min下冷冻离心10min后,取样品上清液待测;②、理化指标测定:取样品上清液采用传统的化学方法进行化学需氧量、挥发性脂肪酸和氨氮含量的测定;所述化学需氧量采用密封催化消解法结合T6新世纪紫外可见分光光度计测定,挥发性脂肪酸中的乙酸、丙酸和总酸含量采用Agilent GC‑6890气相色谱仪测定,氨氮采用FOSS FIAstar 5000流动注射分析仪测定;③、近红外光谱采集:另取样品上清液采用Antaris II FT‑NIR光谱仪进行沼液近红外光谱采集,采用透射分析模块,样品池采用1mm光程矩形比色皿,光谱范围为4000‑10000cm‑1,扫描次数为32次,分辨率为8.0cm‑1;④、对③中采集的沼液近红外光谱进行预处理及样品集划分:对光谱数据采用一阶导数平滑处理后,再进行标准正态变量变换处理,并基于蒙特卡洛交叉验证去除异常样本;运用KS法将去除异常样本后的样品集按3∶1的比例划分校正集和验证集;其特征在于:⑤、基于双重遗传模拟退火算法的特征波长优选:第一步:对标准遗传算法进行改进,引入模拟退火算法的温度参数和降温操作,构建遗传模拟退火算法;遗传模拟退火算法以偏最小二乘回归模型的交叉验证均方根误差为目标函数,结合温度参数设计适应度函数,所述适应度函数计算公式如下:式中,f(x)为当前染色体的目标函数值,fmin为当前代种群中的最小目标函数值,t为当前代温度值;第二步:基于遗传模拟退火算法进行近红外光谱特征区间优选:对校正集中的近红外光谱数据分别按30、40、50、60、80、100、120个波长点划分区间,依次将1557个波长点的光谱数据划分为52、39、31、26、20、16、13个区间,采用二进制编码方式,以区间个数为码长,进行遗传模拟退火算法的种群初始化;“1”和“0”分别表示对应的特征区间所包含波长点对应的数据“是”、“否”选中参与运算;根据种群初始化结果计算各染色体的目标函数值,确定初始温度和降温操作,并计算各染色体的适应度函数值,然后依据适应度函数值对种群中的染色体依此执行带最有保留策略的赌轮选择、离散重组交叉、离散变异和Metropolis选择复制操作,完成一轮次的种群进化过程;经过多个轮次的种群进化,满足设定的算法终止条件后,即完成近红外光谱特征区间优选;按如上步骤,执行多次特征区间优选算法,求出沼液近红外光谱化学需氧量、挥发性脂肪酸和氨氮理化指标在不同区间个数下的多个备选特征区间,通过综合评测校正决定系数和校正均方根误差,确定沼液特定理化指标的最佳区间个数和最佳特征区间;第三步:基于遗传模拟退火算法进行近红外光谱特征波长点优选:以优选后沼液特定理化指标的近红外光谱特征区间包含的特征波长点数为码长,进行二进制编码,并进行种群初始化;“1”和“0”分别表示该波长点对应的数据“是”、“否”选中参与运算;在确定初始温度、降温操作,计算适应度函数值后,执行多个轮次的遗传模拟退火选择、交叉、变异和Metropolis选择复制进化操作,完成近红外光谱特征波长点的优选;针对遗传模拟退火算法优化结果的随机性,多次执行特征波长点优选算法,并选择多次重复选中的波长点为特征波长点建立偏最小二乘回归模型,得到较高的回归模型性能;⑥、将校正集光谱数据分别按双重遗传模拟退火算法优选的沼液化学需氧量、挥发性脂肪酸和氨氮理化指标的特征波长建立相应的偏最小二乘回归模型,并使用验证集对回归模型的精度进行评测;若验证集的评测结果不满足测试精度要求,重新执行第⑤步骤,进行特征波长优选;当建立的偏最小二乘回归模型检测精度满足需求时,输出相应模型,完成沼液理化指标近红外光谱同步快速检测模型;⑦、对需要检测理化指标的沼液样本,离心后取上清液进行近红外透射光谱扫描,再按优选的相应理化指标特征波长输入检测模型,即完成沼液理化指标的同步快速检测。 |
所属类别: |
发明专利 |