摘要: |
随着科学技术的发展,社会信息化程度的日益提高,交通管理智能化已成为发展的趋势。车辆牌照识别系统的研制与开发,是影响交通系统智能化、现代化的重要因素,而车牌定位和字符分割是车牌识别中最为关键的两项技术,对整个系统的性能起着至关重要的作用。
本文在详细研究国内外各种代表性车牌定位算法的基础上,提出了一种三级定位算法。首先基于图像能量特征对车牌区域进行粗定位,得到一组候选区域。然后基于字符纹理特征分析对车牌候选区域进行筛选,得到车牌区域,并运用数学形态学方法对区域作二次定位。接着利用牌照的颜色信息对定位的结果作最后的修正。
车牌倾斜、噪声、边框和铆钉以及光照不均等问题给车牌字符的分割带来了很大困难。本文提出了一种边缘自适应滤波的牌照图像增强算法,有效抑制了噪声对字符边缘信息的干扰。并对牌照图像的二值化方法进行了比较研究。创新的提出了基于字符纹理区域边界检测的车牌倾斜校正算法,解决了长期以来车牌倾斜校正适应性差、精确度低的难题。对字符笔划的平滑处理进行了改进,有效提高了平滑的适应性。并对字符切分的算法进行了讨论。
在研究的基础上,设计和实现了车牌定位和字符分割软件模块,并对车牌定位和字符分割算法进行了测试。车牌定位的准确率达到96.5﹪,错误率1﹪,失败率2.5﹪;字符分割的车牌正确率达到93.45﹪,字符正确率达到98.25﹪。实验结果表明,本文的车牌定位和字符分割算法具有较好的实用性和鲁棒性,并已在实际的工程中得到了应用。 |