当前位置: 首页> 交通专利数据库 >详情
原文传递 一种基于身份识别的车辆云自适应巡航控制系统及方法
专利名称: 一种基于身份识别的车辆云自适应巡航控制系统及方法
摘要: 本发明提出了一种基于身份识别的车辆云自适应巡航控制系统及方法。本发明系统包括:身份识别模块、触屏互动模块、前向传感器、后向传感器、车速传感器、油门及制动行程传感器、存储模块、5G传输模块、控制模块以及车辆云端服务器。本发明方法控制模块通过信息融合方法对传感器采集数据进行融合;控制模块对融合后数据进行筛选打包,然后5G传输模块将融合数据传输至云端,创建一个唯一识别码,车型代码及驾驶数据集的集合;云端使用一种两阶段方法创建及更新ACC方案,第一阶段强化学习算法;第二阶段循环神经网络算法。本发明优点在于降低单车成本,提高数据的利用率与人车交互性,本发明的ACC方案更符合人的驾驶意图并适应不同驾驶员的驾驶习惯。
专利类型: 发明专利
国家地区组织代码: 湖北;42
申请人: 武汉理工大学
发明人: 贺宜;孙昌鑫;严新平;吴超仲;乔磊;陆一辉;宋钰
专利状态: 有效
申请日期: 2019-04-03T00:00:00+0800
发布日期: 2019-06-18T00:00:00+0800
申请号: CN201910265230.3
公开号: CN109895770A
代理机构: 武汉科皓知识产权代理事务所(特殊普通合伙)
代理人: 薛玲
分类号: B60W30/14(2006.01);B;B60;B60W;B60W30
申请人地址: 430070 湖北省武汉市洪山区珞狮路122号
主权项: 1.一种基于身份识别的车辆云自适应巡航控制系统,其特征在于,包括:身份识别模块、触屏互动模块、前向传感器、后向传感器、车速传感器、油门及制动行程传感器、存储模块、5G传输模块、控制模块以及车辆云端服务器,模块之间的信息传递与功能连接均通过控制模块对其他模块发出控制指令来进行; 所述控制模块分别与所述的身份识别模块、触屏互动模块、前向传感器、后向传感器、车速传感器、油门及制动行程传感器、存储模块、5G传输模块通过导线依次连接;所述5G传输模块与所述车辆云端服务器通过无线通信方式连接。 2.根据权利要求1所述的基于身份识别的车辆云自适应巡航控制系统,其特征在于, 所述身份识别模块用于采集驾驶人的指纹信息作为唯一识别码,通过指纹识别来识别驾驶人的身份,将唯一识别码传输至所述控制模块; 所述触屏互动模块用于选择使用不同的自适应巡航控制方案或关闭自适应巡航控制模式; 所述前向传感器分为左前向传感器和右前向传感器,采用2个毫米波雷达,距车辆中轴线0.5m对称安装于车头;左、右2个前向传感器将同时采集2组前向车辆车速、前向车辆加速度、与前向车辆相对位置的数据数据,并将这2组数据传输至所述控制模块进行信息融合处理; 其中,左前向传感器在t时刻采集的前向车辆车速、前向车辆加速度、与前向车辆相对位置的数据记为vfL,t、afL,t、xfL,t;右前向传感器在t时刻采集的前向车辆车速、前向车辆加速度、与前向车辆相对位置的数据记为vfR,t、afR,t、xfR,t; 所述后向传感器分为左后向传感器和右后向传感器,采用2个毫米波雷达,距车辆中轴线0.5m对称安装于车后;左、右2个后向传感器将同时采集两组后向车辆车速、后向车辆加速度、与后向车辆相对位置的数据,并将这2组后向传感器数据传输至所述控制模块进行信息融合处理; 其中,左后向传感器在t时刻采集的后向车辆车速、后向车辆加速度、与后向车辆相对位置的数据记为vbL,t、abL,t、xbL,t;右后向传感器在t时刻采集的后向车辆车速、后向车辆加速度、与后向车辆相对位置的数据记为vbR,t、abR,t、xbR,t; 所述车速传感器用于采用磁电式传感器,采集本车速度、本车加速度,并将本车速度、本车加速度传输至所述控制模块处理; 所述油门及制动行程传感器用于采用位移式传感器,采集车辆油门踏板行程与制动踏板的行程,并将车辆油门及制动踏板的行程传输至所述控制模块处理; 所述存储模块预存现有车辆的车型代码,并用于过渡性存储下列数据:所述身份识别模块采集的唯一识别码,所述左前向传感器采集的前向车辆车速vfL,t、前向车辆加速度afL,t、前向车辆相对位置数据xfL,t,所述右前向传感器采集的前向车辆车速vfR,t、前向车辆加速度afR,t、前向车辆相对位置数据xfR,t,后述控制模块融合为1组的前向车辆车速、前向车辆加速度、与前向车辆相对位置数据,所述左后向传感器采集的后向车辆车速vbL,t、后向车辆加速度abL,t、与后向车辆相对位置数据xbL,t,所述右后向传感器采集的后向车辆车速vbR,t、后向车辆加速度abR,t、与后向车辆相对位置数据xbR,t,后述控制模块融合为1组的前向车辆车速、前向车辆加速度、与前向车辆相对位置数据,所述车速传感器采集数据即本车速度、本车加速度,所述油门及制动行程传感器采集数据即车辆油门踏板行程与制动踏板的行程,以及各传感器采集数据时由控制模块所附加的对应的时间信息; 所述控制模块将: 执行系统的计时功能;为了确保数据的时间顺序,信息采集模块的各传感器所采集到的每一时刻的数据都会由控制模块附加上当前的时间信息(时间戳); 而且每隔一段时间车辆端会与车辆云端自动对时,保证所有车辆端与云端的时间一致; 将所述左前向传感器采集的前向车辆车速vfL,t、前向车辆加速度afL,t、前向车辆相对位置数据xfL,t、所述右前向传感器采集的前向车辆车速vfR,t、前向车辆加速度afR,t、前向车辆相对位置数据xfR,t,通过控制模块融合为1组的前向车辆车速、前向车辆加速度、与前向车辆相对位置数据,记为vf、af、xf; 将所述左后向传感器采集的后向车辆车速vbL,t、后向车辆加速度abL,t、与后向车辆相对位置数据xbL,t,所述右后向传感器采集的后向车辆车速vbR,t、后向车辆加速度abR,t、与后向车辆相对位置数据xbR,t,后述控制模块融合为1组的前向车辆车速、前向车辆加速度、与前向车辆相对位置数据,记为vb、ab、xb; 将信息融合后的前向传感器采集数据(前述vf、af、xf),车速传感器采集数据(本车速度、本车加速度),油门及制动行程传感器采集数据(车辆油门踏板行程与制动踏板的行程),以及各传感器采集数据时由控制模块记录的对应时间信息打包进驾驶数据集; 将信息融合后的后向传感器采集数据(前述vb、ab、xb)与用于执行后向安全判断; 将存储模块中的现有车辆的车型代码、所述身份识别模块采集的唯一识别码,及前述驾驶数据集中数据传输至所述存储模块以及所述5G传输模块; 控制模块将执行一种前置方法完成上述硬件描述中所提到的的功能:对将传感器采集数据的预处理即信息融合与数据筛选,处理后的数据即唯一识别码、车型代号、驾驶数据集传输至云端,后向传感器融合数据用于在车辆端执行后方安全判断功能。 3.一种采用权利要求2所述的基于身份识别的车辆云自适应巡航控制系统进行基于身份识别的车辆云自适应巡航控制方法,其特征在于,包括以下步骤: 步骤1:控制模块通过信息融合方法对传感器采集的数据进行融合; 步骤2:控制模块对融合后数据进行筛选和打包,然后通过5G无线传输模块融合后数据传输至云端,创建一个唯一识别码,车型代码及驾驶数据集的集合; 步骤3:云端ACC方案创建及更新方法第一阶段即强化学习算法,在安全距离控制方案A0的基础上,使用驾驶人实车数据集展开强化学习,使安全距离控制方案最终迭代成为符合群体驾驶人习惯的自适应巡航控制方案即通用自适应巡航控制方案A1; 步骤4:云端ACC方案创建及更新方法第二阶段即循环神经网络算法,收集一段时间内个体驾驶人使用方案A1或A2的时间序列驾驶数据集W,对所收集的数据按照时间顺序输入到云端的循环神经网络中,经过多个隐含层的迭代后得到符合个体驾驶人习惯的个性化定制自适应巡航控制方案即定制方案A2;在使用一段时间的方案A2后可以对其进行更新,更新后的方案A2’通过对油门/制动踏板行程优化率这一反馈参数进行检验。 4.根据权利要求3所述的基于身份识别的车辆云自适应巡航控制方法,其特征在于,步骤1中所述的信息融合方法为: 通过信息融合方法把左前向传感器采集的vbL,t、abL,t、xbL,t与右前向传感器采集的vbR,t、abR,t、xbR,t融合为一组前向车辆车速vf,t、前向车辆加速度af,t、前向车辆相对位置数据xf,t,可以把所有时刻的前向车辆车速、前向车辆加速度、前向车辆相对位置数据记为vf、af、xf; 同理,通过信息融合方法把左后向传感器采集的vbL,t、abL,t、xbL,t与右后向传感器采集的vbR,t、abR,t、xbR,t融合为一组后向车辆车速vb,t、后向车辆加速度ab,t、后向车辆相对位置数据xb,t;可以把所有时刻的后向车辆车速、后向车辆加速度、后向车辆相对位置数据记为vb、ab、xb; 其他传感器采集的数据无需信息融合;可以把所有时刻的车速传感器采集数据后述本车速度、本车加速度记为vr,ar,油门及制动行程传感器采集数据车辆油门踏板行程与制动踏板的行程记为l,l’,各传感器采集数据时由控制模块记录的对应时间信息记为t; 上述传感器数据暂时存储于存储模块; 以2组前向车速数据vfL,t与vfR,t为例,前述信息融合(将vfL,t与vfR,t融合为vf,t)的具体过程如下: 记2个毫米波雷达在t时刻记录的2个前向车速为vfL,t,vfR,t,融合后的前向车速数据为vf,t; 则有,若vfR,t∈[0.99vfL,t1.01vfL,t],则令vf,t=(vfL,t+vfR,t)/2并输出vf,t;若vfR,t不在[0.99vfL,t1.01vfL,t]区间内,则将这一时刻的vfL,t与vfR,t数据作废,在0.1s后再收集vfL,t+0.1与vfR,t+0.1数据重新执行这一信息融合方法; 通过这一信息融合的具体过程可以将前向传感器采集的2组数据融合为1组前向车辆车速vf,t、前向车辆加速度af,t、前向车辆相对位置xf,t;将后向传感器采集的2组数据融合为1组后向车辆车速vb,t、后向车辆加速度xb,t、与后向车辆相对位置xb,t。 5.根据权利要求3所述的基于身份识别的车辆云自适应巡航控制方法,其特征在于,步骤2中所述对融合后数据进行筛选和打包为: 将所述后向传感器所采集并融合的后车相对距离xb、后车速度vb、后车加速度ab筛选出来,这些数据用于对车辆的后方安全判断,这些数据不会上传到云端,只在车辆端进行处理; 剩余的传感器数据(前向传感器采集并融合的前向车辆车速vf,t、前向车辆加速度af,t、前向车辆相对位置xf,t,车速传感器采集的本车速度、本车加速度,油门及制动行程传感器采集的车辆油门踏板行程l、制动踏板的行程l’,采集传感器数据时控制模块记录的时间信息t)打包为驾驶数据集,这些传感器数据在驾驶数据集被打包为三个部分:工况数据,操作数据与时间数据; 工况数据包括由左、右前向传感器数据融合后的前车相对距离xf、前车速度vf、前车加速度af; 操作数据包括由所述车速传感器采集的本车加速度ar,所述油门及制动踏板行程传感器采集的油门踏板行程l与制动踏板行程l’; 时间数据,即所述信息采集模块在采集一组工况数据与操作数据的组合时由控制模块所实时记录的时间信息时间戳t,采集数据的时间间隔为0.1s量级,而且每隔一段时间车辆端会与车辆云端自动对时,保证所有车辆端与云端的时间一致; 步骤2中所述的后方安全判断方法描述如下: 车辆端的控制模块使用后车速度vb、后车加速度ab与本车速度vr加速度ar执行后方安全判断;驾驶员反应时间为ts, 当 系统会暂时停止减速操作,并提示驾驶员注意准备接管车辆; 所述5G传输模块用于将现有车辆的车型代码、所述身份识别模块采集的唯一识别码,以及上述驾驶数据集中的所有数据(前述所有时刻的vf、af、xf,vr、ar,l、l’与时间信息t),在大于28GHz的超高频段下以大于1Gbps的速度实时传输至所述车辆云端服务器; 车辆端的5G信息传输模块采用的5G终端芯片,可以通过与5G基站的信号交换实现数据的高速传输; 车辆云端服务器,是由汽车服务商所建立的云服务器,提供云存储和云计算的功能,包括数据仓库和数据加工平台,并在数据仓库中依据唯一识别码建立该驾驶人的驾驶档案,驾驶档案中储存所述5G传输模块所上传的唯一识别码,车型代码及驾驶数据集(驾驶数据集在控制模块方法部分已有详细叙述); 车辆云端可以会实时同步车辆端产生的驾驶数据,并根据唯一识别码和车型代码; 然后车辆云端服务器将基于该驾驶人驾驶档案中的驾驶数据集运行一种两阶段步骤3和步骤4的方法对自适应巡航控制方案进行创建及更新。 6.根据权利要求3所述的基于身份识别的车辆云自适应巡航控制方法,其特征在于,步骤3中所述驾驶人实车数据集: 在一种车辆A尚未出厂的系统实验运营阶段,需要随机招募大量司机驾驶驾驶A型车辆进行实车实验;将实车试验得到的所有被招募司机驾驶档案中的驾驶数据集提取出来,去掉唯一识别码数据后合并成一个数据集,称为A型车驾驶人实车数据集,记为VA;因为后述算法与车型无关,故后述的驾驶人实车数据集的代号忽略车型下标,记为V;合并后的数据集V中的驾驶数据共有N组,可记为V1,V2,…,VN;为了表示驾驶人实车数据集中每一组驾驶数据,将驾驶人实车数据集第i组驾驶数据记为Vi,i∈[1,N]; 第i组驾驶数据Vi由工况数据Ci、操作数据Mi、时间数据ti与反馈信号si(反馈信号为后述强化学习算法的一个参数,在后述强化学习算法中给出详述)组成,记为Vi={Ci,Mi,ti,si}; 工况数据Ci包括:由所述前向传感器采集的前车相对距离、前车速度、前车加速度,依次记为xfi、vfi、afi;由所述车速传感器采集的本车速度,记为vri;于是工况数据可以表示为Ci={xfi,vfi,afi,vri}; 操作数据Mi包括由所述车速传感器采集的本车加速度,记为ari;由所述油门及制动踏板行程传感器采集的油门踏板行程与制动踏板行程,依次记为li与li’;于是操作数据可以表示为Mi={ari,li,li’}; 时间数据ti即所述信息采集模块在采集一组工况数据与操作数据的组合时所实时记录的时间信息ti; 反馈信号si为后述强化学习算法的一个参数,任意si的初始值均为1,在后述强化学习算法中,通过迭代过程中的自适应巡航控制方案输出的操作数据的与驾驶人实车数据集中相同工况下的操作数据进行比对与处理后,对si的值进行调整,在下一次迭代时,将会更准确; 但实际上,上述定义的某些数据在第一阶段的算法中暂时使用不到,为了数据集介绍的完整性,也加入了进去,具体使用的数据以后述算法流程为准; 方案A0可以采用安全距离控制方案,在输入一组工况数据Ci后,通过计算即可输出一组操作数据Mi; 步骤3中所述方案A0的具体描述如下: 车辆服务商将根据不同车型预设期望距离dd、前向安全距离ds,期望速度vd;安全距离ds是保证车辆在紧急情况下制动不会撞到前车的距离;期望距离dd是除安全距离外,车辆做出使驾驶人感到较为舒服的制动或加速操作所需的距离;期望速度vd为根据车辆正在行驶的道路的限速和路况所设定的; 如果在安全距离加期望距离ds+dd内没有前车(由所述前向传感器所测得的前车相对距离xfivr),那么系统将本车加速至期望速度vd;在加速过程中,本车加速度ar=k,k为一符合发动机动力及驾驶员感受的标定常数加速度; 如果安全距离加期望距离ds+dd内有前车(xfi>ds+dd)且前车速度vf比本车速度vr慢(vfds),在理想状态下,本车速度vr与前车速度vf保持近似一致(vr≈vf); 本车速度vr及加速度ar将遵循如下公式实时变化: e(t)=d(t)-dd+ds vr(t)=Kpe(t)+Ki∫0te(s)ds 其中,d(t)为两车的实时车距,dd为期望距离,ds为安全距离,vr为本车速度,Kp,Ki分别为比例常数和积分常数,对于不同的车辆需要重新标定; 此外,在方案A0中,因为理想状态下vr≈vf,所以驾驶员无需对油门及制动踏板进行操作,所以始终有l=0,l’=0; 步骤3中所述强化学习算法与方案A1为: 该强化学习算法的目的是利用驾驶人实车数据集中的驾驶数据Vi对方案A0进行迭代,迭代的结果是使方案A0变为方案A1;运行过程如下: 步骤3.1,在第1组至第N组驾驶数据V1,V2,…,VN中任取一组对应的强化反馈信号si绝对值最大的驾驶数据Vi,Vi={Ci,Mi,ti,si},其中Ci={xfi,vfi,afi,vri},Mi={ari,li,li’}; 步骤3.2,令C0i=Ci,在方案A0中输入C0i={xf0j,vf0j,af0j,vr0j},A0会输出一组对应的M0i={ar0i,l0i,l0i’},并令t0i=ti; 步骤3.3,在第1至第N组驾驶数据V1,V2…Vi…VN中寻找符合约束条件s.t.的多组数据Vi1,…Vij,…,Vin(j∈[1,n],n
所属类别: 发明专利
检索历史
应用推荐